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Sebesta defines Abstract Data Types (ADTs) as data types that satisfy the
following properties:

(a) “The declarations of the type and the protocols of the operations on ob-
jects of the type [...] are contained in a single syntactic unit.”

(b) “The representation of objects of the type is hidden from the program
units that use the type.”

Standard ML provides ADT support by means of a specialised module lan-
guage. This module language provides five features:

(a) signatures', which describe a type or several types as well as operations
over the type or types.

Signatures capture the idea behind Sebesta’s first concept above.
(b) structures?, which collect types and structures in a single syntactic unit.

(c) signature constraints, which allow us to hide implementation details from
prying eyes: a signature constraint takes a signature and a structure, and
hides all parts of the structure except for the parts that are listed in the
structure.

(d) structure/signature renaming and inclusion, which allows us to save some
typing work.

(e) functors, which transform structures into other structures. For example,
the SML/NJ library uses functors to transform a structure that describes
a datatype into a structure that describes a hashmap over the datatype.

Functors are a very powerful feature— less expressive than C++ templates,
but still quite expressive. However, since they are specific to Standard ML, we
will not discuss them here. Similarly, structure and signature inclusion, while
extremely handy for practical programming, are only convenience features that
I will leave out.

IThese are different from method signatures and procedure signatures. For clarity, I wil
call them SML signatures.
2Not to be confused with C structs, which are records.
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1 Structures

SML structures are similar to structures and modules found in other languages
(such as Pascal or CLU): Each structure collects definitions of types and val-
ues (including functions) in a specific namespace. For example, below is the
definition of a simple STACK structure:

structure Stack =
struct
type 'a stack = 'a list

val empty = []
val push = op::
fun pop [] NONE
| pop (tos::rest) = SOME tos

end

This structure collects the definition of a type constructor stack and of op-
erations definitions on it:

val empty : 'a stack
val push : "a % 'a stack —> 'a stack
val pop : 'a stack —> 'a option

We can now use this structure in our SML programming. For example, we
can push an element onto the stack:

— Stack.push (1, Stack.empty);

The above can be a bit inconvenient to type. SML allows us to import
structures directly, but we will not use this feature; instead, we will introduce
an alias to the structure Stack:

— structure S = Stack

Now we can write
— S.push (1, S.empty);

Alas, what SML reports back to us is not quite what we wanted:
val it = [1] : int list

The type of our result is int list, not int stack! Let us try to see whether we
can convince the type inference system to give us the type we wanted:

— S.push (1, S.empty) : int S.stack;
val it = [1] : int S.stack

Well, we can— but the result is still not satisfying. Our explicit type anno-
tation convinced the type inference system to use a different type, but all this
means is that SML considers Stack.stack to be just an alias for list: we can use
both interchangeably whereever we want. In fact, as far as SML is concerned,
the types of our stack operations are the same as the following:
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val empty : 'a list
val push : "a % "a list —> 'a list
val pop : 'a list —> 'a option

In summary, structures, by themselves, are useful for collecting related def-
initions into a common namespace?, but it does little by itself to help us with
abstract datatypes.

2 Signatures

As we discussed above, structures are insufficient to give us abstract datypes.
What we need are abstract descriptions of the type we want to provide (hence
the term abstract data type). In SML, these abstract descriptions come about
in the shape of signatures. Signatures can be given names, though this is not
neccessary. Below is a named signature, with the name STACK, which neatly
matches the stack datatype we want.

signature STACK =

sig
type 'a stack
val empty : 'a stack
val push : 'a % 'a stack —> 'a stack
val pop : 'a stack —> 'a option
end

Note that we didn’t specify what the 'a stack looks like. This is precisely
the point where we abstract over the concrete implementation: We explicitly
do not give any implementation details. In fact, we may have many different
implementations— our list-based implementation is simple and straightforward,
but we could use a different datatype, or use some of SML’s imperative features
to log stack usage.

Now, let us apply the above signature to our STACK:

structure ListStack = Stack :> STACK

The above is similar to an aliasing, except that we now introduce a signature
constraint: We force Stack to match the signature STACK, using the operator
>4, As a result, we get a structure ListStack, which we abbreviate as

structure LS = ListStack
Let’s try to push something to this stack:

— LS.push (1, LS.empty);
val it = — : int ListStack.stack

3A namespace is a scope that has a name attached to it, such that we can refer to the
scope by name.

4This operator should not be confused with the subtype relation, even though the two are
related.
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SML allowed us to push the value, but now the type we got back is the type
we wanted. Let’s see whether this type is still compatible to int list:

— val | : int list = LS.push (1, LS.empty);
(* ERROR: Types don’'t match! x)

Our new stack type is now distinct from the type of lists. Thus, we have
managed to implement an ADT: First, we managed to contain the description
of the ADT in a “single syntactic unit”, namely our signature STACK. Secondly,
we have managed to provide an implementation of the stack that did not reveal
its inner workings, in our structure ListStack.

Signature constraints not only restrict types, but also eliminate definitions
that were not promised by the signature. For example, consider the alternative
(and somewhat silly) implementation of STACK below:

structure SlowStack =
struct
datatype 'a stack = TOS
| ELT of 'a % 'a stack

fun replace_tos v TOS = v
| replace_tos v (ELT (e, tl)) ELT (e, replace_tos v tl)

val empty = TOS
fun push (elt, stack) = replace_tos (ELT (elt, TOS))
stack
fun pop (TOS) NONE
| pop (ELT (v, TOS)) = SOME v
| pop (ELT (-, tl)) = pop tl
end :> STACK

This implementation manages to replace the efficient O(1) push and pop
operations from our list-based implementation by O(n) operations. The inter-
esting part, however, is that, after the type constraint, SlowStack looks and
behaves exactly like ListStack (apart from being slower, of course).

In particular, the signature constraint did the following:

(a) The signature hid the fact that stack is implemented as a user-defined
datatype

(b) The signature hid both of the constructors, TOS and ELT, which would
normally be visible in the structure, and

(c) The sinature hid the auxiliary function replace_tos.
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3

Summary

SML signatures (signature SIG = sig . . . end) allow us to specify the abstract
description of an ADT.

SML structures (structure Str = struct ... end) allow us to collect type and
value definitions in a single namespace.

The signature constraint operator, :>, allows us to restrict a structure to
precisely the information promised by a signature. The result of such a
restriction is again a structure.

SML signature and structure aliases allow us to define shortcuts for sig-
nature and structure names. Simultaneously, in combination with the :>
operator, they allow us to give names to structures that we have restricted
by a signature.

We need structures, signatures, and :> to build ADTs in Standard ML.
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