
Object-Oriented Languages
Many of the most popular languages today are object-oriented (hereafter abbreviated as
OO). Thus, it is important to understand how they work so that we can use them more
effectively. This document describes the basic ideas and concepts behind OO languages,
using Java as an example language in the family. These notes are, of course, also
applicable to other statically (or mostly statically) typed object-oriented languages such
as C++ or Modula-3. Dynamically-typed object-oriented languages, such as Smalltalk,
are somewhat different and are not discussed in this chapter.

To understand OO languages we need to understand five main concepts: classes,
inheritance, overriding, subtyping, and dynamic dispatch. We now discuss each of
these in turn.

1.1. Classes and ADT

Classes are a mechanism for expressing abstract-data types (ADTs) in object-oriented
languages. An ADT groups together data with the operations on the data. For example,
the following class, called Point0, groups together the data needed to represent a point in
two-dimensional space with the operations on it:

class Point0 {
 int x; int y;
 void getx() { return x; }
 void gety() { return y; }
 void setxy(int newx, int newy) { x = newx; y = newy; }
}

A class, such as Point0, looks a lot like a record (or struct in C/C++ terminology) except
that it also has operations in it which records typically do not have. You can think Point0
as being a blueprint: it describes the properties of all instances of Point0. One can create
an instance of a class by using a creation operation (e.g., new Point0() in Java/C++-
like syntax). Instances of class Point0 are often called objects of class Point0. Each
instance has a unique name, called its identity. You can think of the identity as being
analogous to a social security number: each person in the US has a unique social security
number. Different languages implement object identity differently. Some languages,
such as C++, use the memory address of an instance as its identity. Java does not use the
memory address of an instance as its identity since the memory address of an instance
might change if the garbage collector moves the instance. Instead, Java uses a more
abstract notion that it calls a reference.

Each instance of Point0 has its own private copy of the two instance variables x and y.
Instance variables are analogous to fields. Object-oriented languages prefer to use the
term “instance variables” instead of “fields” because “instance variables” is more
explicit: an instance variable is a variable belonging to an instance of the class.

Each instance of Point0 also gets its own private copy of the methods1 getx, gety,
and setxy. The methods are operations that one can perform on an instance of
Point0. For simplicity, Point0 has only three methods, but to be really useful, we
would need to add more methods to it (e.g., a method to compute the distance between
two points). The instance variables of a class are in scope in all the methods of the class.
Thus, the methods of Point0 can access x and y.

Now, we are ready to see some example code that uses Point0.
int main() {

/* Create a new instance of Point0 and put its identity
into p1. */
 Point0 p1 = new Point0();
/* Create another instance of Point0 and put its identity
into p2. */
 Point0 p2 = new Point0();
/* Invoke setxy method of the instance whose identity is in
p1. After this line p1 holds the identity of a Point0
instance whose instance variables x and y have value 11 and
12 respectively */
 p1.setxy(11, 12);
/* Invoke setxy method of the instance whose identity is in
p2. After this line p2 holds the identity of a Point0
instance whose instance variables x and y have value 21 and
22 respectively */
 p2.setxy(21, 22);
/* Assign the identity in p2 to p1. After this line, p1
and p2 hold the identity of the same object whose x has
value 21 and y has value 22. */
 p1 = p2;
/* Prints 21 */
 print p1.x;
}

So far we have assumed that all instance variables and methods are publicly accessible.
However, to support abstract data types, classes must also provide a mechanism for
hiding their concrete internals. Languages such as Java, C++, and C# allow one to
annotate instance variables and methods with public or private to indicate whether they
are publicly accessible or hidden. For example, a better design of a Point class would
hide x and y so that code using these points (called clients) such as the routine "main"
above cannot access the internal representation directly.

class Point1 {
 private int x; private int y;
 public void getx() { return x; }
 public void gety() { return y; }

1 This is not really true in any real implementation of an object-oriented language but we will assume it for
now for simplicity.

 public void setxy(int newx, int newy) { x = newx; y =
newy; }
}

Since x and y are private, they are accessible only by methods of the same class. For
example, if "main" above used Point1 instead of Point0, it would not be able to
execute p1.x since x is private and thus inaccessible outside the Point1 class.

1.1.1 An Extended Example

Now that we have discussed the terminology and basic concepts behind classes, let’s
consider a larger example, a stack for integer values. Stacks are a heavily used data
structure, so it makes sense to write it so that it is easy to use for any client.

Class Stack0 {
 private int values[];
 private unsigned int size;
 private int firstFree;
 // Constructor: initializes a new instance of a stack
 public Stack0(unsigned int s) {
 if (s <= 0) error;
 values = new int[s];
 size = s;
 firstFree = 0;
 }
 // Another constructor: used when no argument is
explicitly passed
 public Stack0() {
 // Use the other constructor with the argument 100
 this(100);
 }
 public void push(int v) {
 if (firstFree < size) {
 values[firstFree] = v; firstFree = firstFree + 1;
 }
 else error
 }
 public int pop() {
 if (firstFree == 0) error
 else {
 firstFree = firstFree - 1;
 int retval = values[firstFree];
 return retval;
 }
 }
}

The above stack uses an array of s integers to store the values. A more sophisticated
stack might grow the array as needed rather than throwing an error if a client pushes more
than s elements on the stack.

The above stack class uses a new concept: a constructor. A constructor is just a special
function that is executed for each new instance of the class. It is a great place for putting
initialization code. For example, the constructor for Stack0 creates an array to hold the
contents of the stack.

Let’s now consider a client of Stack0:
int main() {
 // Declare two variables that can hold the identity of a
stack
 Stack0 s1;
 Stack0 s2;
 // s1 holds the identity of a new stack with a size of
100
 s1 = new Stack0(100);
 // s2 holds the identity of a new stack with a size of 10
 s2 = new Stack0(10);
 // push 1 and 2 on stack whose identity is in s1
 s1.push(1); s1.push(2);
 // push 3 and 4 on stack whose identity is in s2
 s2.push(3); s2.push(4);
 // print 2
 print s1.pop();
 // print 4
 print s2.pop();
 s1 = s2;
 // print 3
 print s1.pop();
}

Note that main invokes push and pop on the instances of Stack0 but cannot access
firstFree, values, and size since they are private instance variables. To see why
it is important to make these instance variables private, imagine if the instance variables
were actually public. Let’s suppose that a client wants to write a routine that enumerates
over all the integers in the stack without actually popping all the integers off. A client
may write a routine such as:

 int printAll(Stack0 s) {
 int cur;
 for (cur = 0; cur < s.firstFree; cur++) {
 print s[cur]; cur = cur + 1;
 }
 }

This works fine for now (assuming, of course, that the instance variables are actually
public). Let’s suppose the author of Stack0 decides to change the internal
representation of a stack so that instead of using an array of integers, it uses a linked list

of integers. This is a reasonable change to make since using a linked list allows the stack
to grow or shrink as needed. In other words, the maximum depth of a stack does not have
to be fixed at the time an instance of a stack is created. If the author of Stack0 makes
this change, the code printAll breaks: it still expects an array as the internal
representation.

The author of an ADT needs to decide for each method and instance variable whether it
belongs to the representation of the ADT or to its public interface. The representation
should be protected from external access (e.g., by marking it as “private”). The public
interface is a promise that the author of the ADT makes to her clients: clients can assume
that the public interface will not change, at least not in a way that breaks the clients’
code. Commercial suppliers of library code try very hard to respect and maintain this
distinction.

1.2. Inheritance

One of the major thrusts of software engineering especially over the last two decades has
been code reusability. One should be able to write code once and use it many times. I
remember one of the biggest frustrations while programming in C was that I had to keep
writing basically the same code many times, each time with some small difference.
Inheritance is one mechanism in object-oriented languages for facilitating code reuse.

For example, let’s suppose that I need a stack that supports not just push and pop, but
also supports top, where top returns the top integer in the stack without removing it
from the stack. I could write a new stack package, called Stack1, that has push, pop,
and top methods but that would be wasteful since the implementations of push and pop
would be identical to those of the push and pop in a Stack0. I could avoid some of the
effort by just using the copy and paste feature of my editor to copy the push and pop from
a Stack0 to Stack1. However, now I have two copies of the same code and thus, if I
find a bug in my implementation of pop, I have to fix it in two places, rather than just
one. A stack is such a generally useful data structure that if I have a large program, I may
have many uses of a stack, each with slightly different capabilities. Thus, large programs
further aggravate the situation; in a million line program (which is not uncommon
nowadays) I may have to fix a hundred copies of pop!

Inheritance provides a way out of this dilemma by allowing a programmer to specify a
new class which extends another class. For example, in Java I can define my Stack1 as
the following:

/* Define Stack1 to be an extension of Stack0; i.e., Stack1
has all the methods and instance variables of Stack0 plus
possibly some more */
class Stack1 extends Stack0 {
 /* Define the extension: a new top method defined in
terms of push and pop */
 public int top() {
 int retval = pop();
 push(retval);

 return retval;
 }
}

Using this new stack is simple:
int main() {
 Stack0 s0 = new Stack0();
 Stack1 s1 = new Stack1();
 s0.push(10);
 s1.push(20);
 // Prints out 20 20
 print s1.top(), s1.top();
 // Error since s0, of type Stack0, has no top method
 print s0.top();
}

Stack1 is called a subclass of Stack0 and Stack0 is called a superclass of Stack0.
By extending Stack0, Stack1 inherits all the behavior of Stack0, but is free to define
additional behavior (such as top in our example) of its own. In our example, Stack1
only added a new method but it could have added new instance variables.

It is worth reemphasizing that Stack1 is able to reuse the code in Stack0 without
making a copy of it: a big software engineering victory!

1.3. Overriding

In our example above, the subclass simply added a new method. However, sometimes a
subclass may want to modify a superclass’ method. For example, let’s suppose you need
to write a stack that not only has push and pop methods but also counts the number of
times something is pushed onto the stack. You could, of course, write your new stack
independently of the existing stacks but that would result in a maintenance nightmare:
you would end up with multiple copies of the same code that you need to maintain.
Overriding allows a subclass to customize a superclass’ method.

class Stack2 extends Stack0 {
 private int npushes = 0;
 public void push(int v) {
 npushes = npushes+1;
 /* Use the superclass’s push method */
 super.push(v);
 }
 public int getNPushes() { return npushes; }
}

Stack2 extends Stack0 and gives its own implementation of the push method.
Stack2’s push method increments the count of the number of pushes and then uses
“super” to invoke the superclass’ push method which performs the actual push. Clients
can use instances of Stack2 exactly the same way as instances of Stack0 except that it
also supports a new method, getNPushes, which returns the number of pushes
performed on the stack instance.

A method that may be overridden is called a virtual method. A non-virtual method
cannot be overridden. In Java, all methods are virtual by default. In C++ all methods are
non-virtual by default; one needs to explicitly label a method as virtual in order to make
it virtual. The decision of whether or not to make a method virtual should be based on
whether or not a method makes sense to override. The issue of whether or not to make a
method virtual is a deep one that software engineers argue over!

In this section we have assumed that an overridden method must have the same signature
(argument and return types) as the superclass. A language that requires this is said to
have an invariant type system because it does not allow the subclass to vary the type of
any overridden method. We will later discuss the reason why some languages use an
invariant type system while others do not.

It may be natural to ask at this point if a class can inherit from (i.e., extend) more than
one class. It turns out that some (e.g., C++) languages allow this and some (e.g., Java) do
not. To fully understand the reason for this, we first need to finish our discussion of the
two remaining key concepts behind OO languages: subtyping and dynamic dispatch.

1.4. Subtyping

When creating subclasses, a client may wish to extend the superclass in many ways:

1. Add a new method

2. Change the body of a superclass method

3. Add an argument to a superclass method

4. Change argument types of the superclass method

5. Change the return type of a superclass method

6. Add a new instance variable

7. Modify the type of an existing instance variable

8. Change the access control (public, private) of an instance

9. Delete a method

10. …

For each of the above, I’m sure you can think of a motivating example. However, despite
their apparent usefulness, modern languages only allow some of the above possibilities.
For example, Java allows only the first two possibilities. By restricting what how
programmers can extend classes using inheritance, language designers are able to provide
subtyping and subclassing using the same mechanism: inheritance. In other words,
language designers often design languages so that if S1 is a subclass of S2, then S1 is

also a subtype of S2. Tying together these two distinct concepts, subtyping and
subclassing, comes at a cost. We will discuss that later.

Let’s look at some of the extensions described above and determine if they lead to
subtypes.

• Let’s suppose we create a new subclass of Stack0, called Stack1 which adds a
top method (as already done above). Stack1 supports all the behavior of
Stack0. Namely, it has a push and a pop method just like the push and pop
method in Stack0. Thus, Stack1 can be used whenever Stack0 is expected.
More concretely, one can substitute an instance of Stack1 any place where an
instance of Stack0 is expected. In formal notation, Stack1 <: Stack0. It may
be natural to ask if Stack0 <: Stack1. For this to be the case, it must be
possible to substitute an instance of Stack0 when an instance of Stack1 is
expected. This will not work because a Stack1 has a top operation that Stack0
does not support.

• Let’s suppose we create a new subclass of Stack0, called Stack2 which
changes the body of the push method in Stack0 (as already done above). As in
the case above, Stack2 supports all the behavior of Stack0, though for the push
method it may execute different code. Thus, an instance of Stack2 can be used
whenever an instance of Stack0 is expected. In formal notation, Stack2 <:
Stack0. It is important to note here that subtyping considers only the types and
not the implementation of methods: thus even though Stack2 will execute
different code on a push than a Stack0, it is still a subtype of Stack0 because
the types are compatible. It may also be worth asking if Stack0 <: Stack2. It
turns out that using the same argument as above, Stack0 should be considered a
subtype of Stack2. However, for simplicity, languages such as Java, C++, etc.,
do not support Stack0 <: Stack2 because that would mean that a subclass is a
supertype of its superclass. (Aside: if we use structural subtyping, which to my
knowledge is something that only researchers talk about, then Stack0 would
actually be a subtype of Stack2).

• Let’s suppose we create a new subclass of Stack0, called Stack3, which
changes the argument type of push from int to boolean. In this case, Stack3
cannot be used when a Stack0 is expected since Stack0 expects an integer as an
argument to push while Stack3 expects a boolean (assume that there are no
conversions between integers and booleans). Thus Stack3 is not a subtype of
Stack0. It actually turns out that in type theory one can change the type of an
argument (in a specific way) while still maintaining subtyping between subclass
and superclass.

• Let’s suppose we create a new subclass of Stack0, called Stack4, that changes
the return type of pop from int to a subrange (say [1 TO 10]). In this case

Stack4 can still be used where a Stack0 is expected. This is actually a
consequence of the arrow rule. To see this, consider the following example:
Stack0 getS0() {
 Stack0 s0 = new Stack0();
 Stack0.push(5);
}
Stack4 getS4() {
 Stack4 s4 = new Stack4();
 s4.push(5);
}
void main() {
 int x;
 /* The code below expects that getS0 will return a
Stack0, and thus the pop will return an int. Let’s suppose
we substitute getS4 for getS0; in other words, we are
substituting a value of type Stack4 where a value of type
Stack0 is expected. This still works because the pop will
return a subrange which is legal to assign to x */
 x = getS0().pop();
}

You should work through the remaining extensions yourself and make sure you
understand them!

1.5. Dynamic Dispatch

Consider the following method:
void f(Stack0 s) {
 s.push(10);
}

Since Stack2 is a subtype of Stack0, I can pass not only an instance of Stack0 to this
function but also an instance of Stack2. However, Stack0 and Stack2 have different
implementations of the push virtual method; which one will be invoked?

The answer: it depends! If you pass an instance of Stack0 to f, then the push will use
Stack0’s push implementation. If you pass an instance of Stack2 to f, then the push
will use Stack2’s push implementation! In other words, at compile time you cannot
know (in general) which implementation will be used for push: it depends on the class of
the instance actually passed in to f. This is called dynamic dispatching because the
“dispatch” is dynamic (i.e., happens at run time).

1.6. Challenges

The discussion so far applies all non-dynamically-typed object-oriented languages. Most
languages include additional mechanisms besides the ones discussed above. Since these
additional mechanisms are usually designed to fix some problem with the above model, it
is worth looking at them in more detail.

1.1.2 Encapsulation and Inheritance

Classes along with the information hiding that they provide supports encapsulation. By
encapsulation I mean that the internal state in a class is hidden from the outside and may
be accessed only via the public interface (which is made up of public methods).
Encapsulation is very desirable since it makes classes easier to understand. Moreover,
one can modify the internals of a class without affecting clients since other classes cannot
access the internals; they can only use the public interface. For example, as we saw
above, since the internal representation of Stack0 is inaccessible to clients except
through the public interface, one can change the internal representation without breaking
clients.

Inheritance can, however, create some problems for encapsulation.

Let’s suppose a class C has a print method that you would like to reuse in two classes that
you are writing. Then you could define your class as the following:

class MyClass1 extends C { … }
class MyClass2 extends C { … }

In this case you used inheritance for code reuse. However, you ended up with not just
code reuse but subtyping relationships: C <: MyClass1 and C<: MyClass2. This
relationship is unintended and to see why this is a bad thing, consider a client that writes
the following code:

C a[] = new C[10];
a[0] = new MyClass1();
a[1] = new MyClass2();

In other words, even though you used inheritance only for code reuse, the client is
exploiting the subtyping relationship to store objects of type both MyClass1 and
MyClass2 into an array of C.

Now let’s suppose you decide that you discover another class, D, and want to reuse the
print method in D instead of C for MyClass1. In other words, you change the
implementation of MyClass1 to be:

class MyClass1 extends D {…}

From your perspective you are changing just the implementation of your class. This
should not affect any clients because you are using encapsulation which should allow you
to change the implementation without affecting clients. However, in this case, it does
affect the clients: the client cannot put an instance of MyClass1 into the array anymore.

The above problem arises because most modern object-oriented languages use
inheritance for both code reuse and subtyping rather than using a separate mechanism for
each. Java’s interfaces helps with this issue. C++’s private inheritance also helps

1.1.3 Multiple inheritance

So far we have assumed that a class can directly inherit only from one superclass.
However, some languages, notably C++, allow a class to inherit from multiple
superclasses. Bjarne Stroustrup, the designer of C++, motivates multiple inheritance with
the following example:

“A fairly standard example of the use of multiple inheritance would be to provide
two library classes displayed and task for representing objects under the control of
a display manager and co-routines under the control of the scheduler,
respectively. A programmer could then create classes such as:
class my_displayed_task : public displayed, public task
{…}”

[The design and evolution of C++, Page 258]

In other words, my_displayed_task is a subclass of both displayed and task (C++ does not
use the “extends” keyword of Java; instead it uses “:”).

One can imagine many other uses of multiple inheritance. Even then, most languages
today do not support multiple inheritance. The reason for this is the complexity that
multiple inheritance introduces in both the language and the implementation. It is a
classic tradeoff between expressivity and simplicity.

To get a feel for some of the complexity of multiple inheritance, consider the following
code (assume that all methods are virtual). Note that I’m using Java’s “extends” notation
rather than C++’s “:” since I find the Java notation to be more readable.

class A {
 void f() {…};
}
class B extends A {
 void g() {…}
}
class C extends A {
 void g() {…}
}
class D extends B, C {
 …
}

The problem is that class D is getting the f and g methods through both its immediate
superclasses (B and C). So what happens if you invoke either of these methods on an
instance of class D? Which implementation will be used? C++’s solution to this problem
is to force programmers to explicitly indicate which implementation they want to use if
there is any ambiguity. This adds complexity to the language and for programmers; some
language designers feel it is worth it and some do not.

