
CSCI 3155: Principles of Programming Languages
Exercise sheet #11

25 June 2007

Group name:

Functional Programming II

This exercise is mostly a lab exercise, using Standard ML (specifically, Standard

ML of New Jersey, which is one of the five most prominent implementations of
the language).

You can interact with Standard ML using command-line actions or by using
EMACS interaction. The accompanying editor interaction sheet describes how
to interact with SML.

Some of today’s exercises ask for source code submissions. Leave your source
code in a directory called worksheet-11/$n.sml, where $n is the exercise num-
ber. Leave source code where the exercise questions ask for source code, and
only write down text on the exercise sheet where asked for. (You can also use
SML comments to leave your answers to text questions).

Hints:

• In today’s exercise, you may run across error messages “Warning: type

vars not generalized because of value restriction”. These error
messages are due to parts of SML that we will not discuss. You can always
work around this problem by changing the offending expression x to read
fn v ⇒ x v

• You can use use ”file.sml”; to reuse your previous exercise results.

• The SML comment syntax is (* ... *)

Make sure to save all of your source files. The source files are the

.sml files you pass to the sml runtime. You will not get full credit if

you save the compiler output instead of the source files!

SML of New Jersey won’t count how often you interact with it, so feel free
to experiment!

1

CSCI 3155 Exercise sheet #11: Functional Programming II

Exercise 1. As part of the last worksheet, you constructed two helper functions
for dealing with lists. Now that you have learned about pattern matching, you
can write cleaner versions of the same functions.

Feel free to check your previous implementation for hints as to how you can
recurse properly!

(a) Construct a function map that takes a function f as parameter and applies
f to each element of the list, using pattern matching

(b) Construct a function reverse that reverses an arbitrary list, using pattern
matching.

Note that SML already provides these two functions as part of its initial envi-
ronment, as rev and map.

Exercise 2. SML provides an infix function composition operator, “o”.

(a) Determine the type of “o”.

(b) Explain its type.

Exercise 3. The programming language Haskell treats the type “string” as an
alias to the type “list of characters”.

(a) Discuss this approach, using our criteria.

(b) SML takes a similar approach. Explore the types of the functions explode
and implode, then determine (by experiment) what it is that they do.

(c) Implement a function that replaces blanks in strings by dashes (“-”). Use
the “o” operator. Hide any auxiliary definitions you make within a let
block.

25 June 2007 2

CSCI 3155 Exercise sheet #11: Functional Programming II

Exercise 4. Two-valued boolean logic (often imprecisely just called “boolean
logic”) assumes two literal values, TRUE and FALSE. On these values, we nor-
mally define three binary operations AND, OR, IMPLIES, and one unary opera-
tion NOT. Below is a full semantics of all literals and values:

JTRUEK = ⊤

JFALSEK = ⊥

JNOT(x)K =

{

⊤ ⇐⇒ JxK = ⊥

⊥ ⇐⇒ JxK = ⊤

JAND(x, y)K =

{

⊤ ⇐⇒ JxK = ⊤ and JyK = ⊤

⊥ otherwise

JOR(x, y)K =

{

⊤ ⇐⇒ JxK = ⊤ or JyK = ⊤

⊥ otherwise

JIMPLIES(x, y)K =

{

⊥ ⇐⇒ JxK = ⊥ or JyK = ⊤

⊤ otherwise

where ⊤ and ⊥ are two values in some set we use to interpret two-valued boolean
logic.

(a) From the above, extract a BNF grammar of two-valued boolean logic
expressions.

(b) Develop an SML datatype boolexpr that we can use to represent all two-
valued logic expressions.

(c) Implement an interpreter for boolexpr. This interpreter is precisely an
implementation of the denotational semantics. Interpret ⊤ as true and ⊥

as false. The name of your interpreter should be sem.

You may use not and the boolean short-circuit operators andalso and orelse.

(d) Which type represents your object language? Which type represents your
meta-langauge?

(e) Test your interpreter with the following expressions:

TRUE
NOT(TRUE)
AND(FALSE , TRUE)
IMPLIES (NOT(TRUE) , FALSE)
IMPLIES (AND(TRUE, NOT(FALSE)) , FALSE)

25 June 2007 3

CSCI 3155 Exercise sheet #11: Functional Programming II

Exercise 5. Compilers often use types such as boolexpr to represent input pro-
grams. In this exercise we will have a look at what optimising compilers then
do with such expressions.

Copy your definition of the datatype boolexpr into a new program.

(a) In real programs, we must usually deal with variables occurring in expres-
sions. Add a value constructor

VAR : s t r i n g −> boo l e xp r

to your datatype.

(b) Examine your previous definition of sem. Assume that you don’t know
anything about the values of VAR constructions. In this context, you can
still evaluate some expressions, though not all of them. What would you
have to change in sem to adapt it to this new type? Explain1.

(c) Examine again your results for the previous exercise. Observe that the se-
mantics of IMPLIES look very similar to the semantics of OR. Explain how
you can use OR and NOT to describe the (semantically) same construct.

(d) In compiler implementation, it is often helpful to simplify expressions as
much as possible: if our expressions are less complex, we need less complex
logic to deal with them. Write a program map deimply that traverses
through boolexpr and applies the simplification you implemented above.

(e) Test your transformation with the following expressions:

IMPLIES (NOT(TRUE) , FALSE)
IMPLIES (IMPLIES (TRUE, FALSE) , IMPLIES (FALSE , TRUE))

1Do not implement a new sem. There are two popular techniques– one pure, one impure–

to solve this program elegantly; we have discussed neither in class.

25 June 2007 4

CSCI 3155 Exercise sheet #11: Functional Programming II

Exercise 6. In the previous exercise, you traversed over boolexpr values to find
all places to which you could apply a transformation. You can abstract over
this traversal.

(a) Implement a function

mapb : (boolexpr → boolexpr) → boolexpr → boolexpr

that performs the traversal part of map deimplify only. Your function takes
two parameters, a function f and a boolexpr e. Your function should visit
any sub-boolexpr of e and apply f to it.

(b) Reimplement map deimplify using mapb.

(c) Find one or two logical simplifications you can apply to boolexprs (hint:
consider double negation, DeMorgan’s laws if you know them, or how
AND/OR behave if one of their parameters is TRUE or FALSE). Write a
function that applies these simplifications locally. Apply your simplifica-
tion via mapb. Illustrate that it works.

25 June 2007 5

