
CSCI 3155: Principles of Programming Languages
Exercise sheet #13

2007

Group name:

Object-Oriented Programming II

This exercise is largely a lab exercise.
You may use Eclipse (which is preinstalled on our machines) or EMACS/vim
on axon.cs.colorado.edu for the programming exercises. Submit the resulting
programs via e-mail (to creichen@machine.cs.colorado.edu) or leave them in your
home directory on axon, indicating (on the exercise sheet) where you stored
them.

Exercise 1. Java’s instanceof feature allows us to inspect the dynamic type of
an object. Specifically, a instanceof A is true iff a : T and T <: A.

(a) Give an example where such a facility might be useful. You may find
it helpful to consider instanceof in the proximity of explicit narrowing
conversions.

(b) Assume that you only want to test instanceof for one or two classes in
your program (though possibly for many objects). Further assume that
all of the classes you care about are (direct or indirect) subclasses of C.
How could you extend C to achieve an effect similar to instanceof, albeit
limited to only one or two types?

1



CSCI 3155 Exercise sheet #13: Object-Oriented Programming II

Exercise 2. Object-oriented programming has many practical uses. However,
one of its most pleasant attributes is that it maps neatly to many aspects of the
“physical world”.

Illustrate your prowess in Object-Oriented Programming by implementing
a text adventure game1. The instructor has provided you with the parser part
(both as C++ and as Java code), so you can focus on the game content.

You may implement the system either in C++ or in Java. If in doubt, use
Java.

The following contains a step-by-step instruction to implement the game. Be
advised that the steps become less and less concrete and require you to make
more decisions by yourself towards the end.

(a) Set up your development environment to use the skeleton program for
the language you picked. Make sure that it compiles. Use the command
“quit” to exit.

(b) Examine the source code. You will find a class AdvParser, which parses
the input and calls various handler methods (look, go, . . . ). Create a
subclass Game of AdvParser and override the method status to print your
own status/welcome message. Make sure to adjust the class Adv to use
your newly overridden Game class.

(c) We will populate our game world with rooms and items. We want to be
able to (i) look at all three of these (this should print a message describing
the object), and (ii) to get the name of the object.

Implement an appropriate inheritance hierarchy that ensures that all three
have a common supertype that allows us to look at them. Make sure that
you use an appropriate “concept” to implement the common supertype
and its subtypes.

(d) Rooms should have four exits, to the north, south, east, and west. Im-
plement facilities to set the exits (pointing to other rooms). Implement a
single room StartRoom with no exits, and give the room some description.
Make sure that the Game object has a reference to the current room (i.e.,
the StartRoom) and prints the room’s name after every command.

Change the implementation of look to print the room’s description when-
ever the string parameter is null(Java)/NULL(C++).

(e) Implement a second room of your own design and attach it to the Start-
Room. Make sure that the exits of the two rooms match up. Try to ensure
that your implementation enforces that the exits match up.

Now, implement the method go in class Game that allows you to move
around in rooms. Make sure that you can move around among the rooms.
Implement this method with a helper method adjacent in Room that tells
you what room there is in a given direction.

1Or “interactive fiction”, as some people prefer to call it.

2007 2



CSCI 3155 Exercise sheet #13: Object-Oriented Programming II

(f) Let’s have a look at items now. Build a class Storage that collects Items.
Each object of the class should have a name (initialised by the constructor
and retrievable by an appropriate method). The class should have methods
for inserting and removing an item, as well as for printing the names of
all items it contains and for finding an item by name (if present).

Change the class Item so that it knows which Storage it is contained in.
Enforce that each Item is contained in one Storage when it is created.

(g) Ensure that each room has a Storage. Ensure that printing the description
of a room will also print the contents of its Storage.

Construct some Item and put it into the Storage of one of the rooms you
have constructed. Ensure that everything works.

(h) Allow the player to acquire items, using another Storage object, which we
will call the inventory.

To implement this, provide a method remove to Item which removes the
item from its current Storage and places it in another Storage.

Futher override the Game.get method to give you the desired behaviour.

(i) Ensure that the Game.inventory method prints out the inventory. Further
ensure that Game.drop gives you the desired behaviour.

(j) Build a lethal object: if the player tries to pick up the object, the game is
over (you can use Adv.loseGame()/Adv::lose game(void)). Place this object
in a new room.

(k) Build a goal room: if the player is inside of the room, the game fin-
ishes (you can use Adv.winGame()/Adv::win game(void)). Connect the goal
room to one of your rooms to test it.

(l) Now build a simple puzzle. Build a salt object. Build an ice room that
behaves like regular room, except that one exit is inaccessible unless the
player drops the salt in the room (make sure to hide the salt in another
room).

Implement this by overriding the method adjacent in your ice room. Note
that you can re-use the adjacent implementation for regular Rooms within
your overridden implementation.

Ensure that the player must pass the ice room to get to the goal room.

(m) Implement the use method in your Game class. The method should simply
invoke a method of the particular item that the player is trying to use.
Assume that none of the items so far are useable. Ensure that the player
can only use items that are part of the inventory.

(n) Now build another puzzle. Disconnect the goal room from the rest of the
game, and instead introduce a portal room. (To make the puzzle more
reasonable, you might want to add some description to the room that
indicates that there is a sealed door/gate/portal on one side of the room).

Introduce a wand that the player can find in one of the rooms (not the goal
room). The wand should be useable: when the player uses it, it should

2007 3



CSCI 3155 Exercise sheet #13: Object-Oriented Programming II

interactively ask the user for something that it should affect. The user
should input a name, leading to an appropriate effect:

i) When applied to the portal room, the wand should connect the portal
room to the goal room.

ii) When applied to the wand, the wand should make itself disappear
(making the game potentially unwinnable).

iii) Feel free to add further effects. In particular, ensure that it is easy
to add further effects.

Since this is a “magic wand”, you don’t need to be near the object you
affect. Initialise the wand with an array of all the things it can affect. Do
not use narrowing conversions. Do not add any new methods (abstract or
concrete) to unrelated objects (such as Item).

2007 4


