
CSCI 3155: Principles of Programming Languages
Exercise sheet #3

6th June 2007

Name #1:

Name #2:

Name #3:

Group name:

Syntax and Semantics

Exercise 1. (Skill 2.7) Explain, in your own words, what the concepts meta-

language and object language mean. Support your explanation with an example.

1



CSCI 3155 Exercise sheet #3: Syntax and Semantics

Exercise 2. Consider the following grammar, with start symbol 〈S〉:

〈S〉 → 〈prog〉

〈prog〉 → 〈stmt〉 ; 〈prog〉

| ε

〈stmt〉 → id := 〈expr〉

| id += 〈expr〉

| if 〈expr〉 then 〈stmt〉 end

〈expr〉 → 0

| 1

| id

Here, id is a terminal corresponding to a token whose only two valid lexemes
are “a” and “b”.

(a) (Skills 2.2, 2.3) Generate three programs from the grammar. Each pro-
gram must satisfy a certain condition:

i) This program must not contain a semicolon (“;”) character.

ii) This program must contain precisely one semicolon but no “if”.

iii) This program must contain precisely two “if”s, but no semicolon.

(b) (Skills 2.2, 2.5) Is the grammar ambiguous? If so, give an example to
illustrate.

6th June 2007 2



CSCI 3155 Exercise sheet #3: Syntax and Semantics

Exercise 3. In Handout A, our implementation of addition, subtraction etc.
assumed that numbers can be of arbitrary size. In some languages (such as
Java or C++), built-in numbers are normally bounded in size by the number of
bits available for their representation. For example, in Java an int value can
only range from −231 to 231 − 1, and in C (on modern machines) an unsigned

char can only range from 0 to 255.
To reflect this restriction, we will update the denotational semantics of

〈expr〉+〈expr〉 from the handout. The semantics should match those of a C
unsigned char. You may use the first (easiest) definition of addition, from the
beginning of Section 2.1 on the handout.

(a) Update the semantics to “wrap around” if an addition yields a number that
does not fit into the interval from 0 to 255. For example, J200+57K = 1.
This matches the behaviour of C and is very efficient to implement.

(b) Update the semantics to signal an error if an addition yields a number
that falls outside of the interval. This matches the behaviour of Standard

ML.

(c) Both wrap-around and overflow errors are used in the implementations of
existing programming languages, sometimes side by side. Which solution
do you prefer? Argue, using our criteria.

6th June 2007 3



CSCI 3155 Exercise sheet #3: Syntax and Semantics

Exercise 4. Handout A did not describe precisely how we can determine the
semantics of integral numbers. Most language definitions leave out this part,
since it is considered “obvious”. However, a precise description of the semantics
of integral numbers is not entirely trivial.

(a) Using digits and whatever other symbols you might need as terminals,
write a BNF grammar that recognises all integers, of arbitrary size.

(b) (Skill 2.4) Write a denotational semantics for your grammar that trans-
lates the syntactic representation of an integer to an integer number.

6th June 2007 4


