
CSCI 3155: Principles of Programming Languages
Exercise sheet #5 (v2)

11th June 2007

Group name:

Scoping and Parameter Passing

Exercise 1. Ada 83 allows language implementers to choose between the two
possible ways of implementing in out parameters.

(a) (Skill 6.1) What are the two possible ways of implementing in out pa-
rameters?

(b) (Skill 6.1) Explain how the two can lead to different results. You may
use an example.

(c) (Sebesta, Problem Set 9.3, Skill 6.1) Argue in support of the Ada 83
designers’ decision.

1

CSCI 3155 Exercise sheet #5 (v2): Scoping and Parameter Passing

Exercise 2. Many languages used today, such as Java or Haskell, do not provide
out mode parameter passing. Other languages used today, such as C# or Ada,
do provide such a mechanism.

(a) (Skill 6.1) What are the two possible ways of implementing out mode
parameter passing?

(b) (Skill 6.1) Give a practical example where out mode parameters are
useful in a language that already supports regular return values.

(c) (Skillset 1) Consider adding out mode parameters to a language that
doesn’t already have any out or in out mode parameters. Assume that
the language does not support tuples or object-oriented features. Choose
a position on whether or not to add the feature and justify it, using our
criteria and characteristics.

11th June 2007 2

CSCI 3155 Exercise sheet #5 (v2): Scoping and Parameter Passing

Exercise 3. Sebesta describes two scoping techniques: dynamic scoping and
static scoping.

(a) The following Mystery program is statically scoped. Mark its static
scopes as on page 229 in Sebesta:

VAR i : INTEGER ;
PROCEDURE p (j : INTEGER) : INTEGER =
BEGIN

j := j + j ;
PROCEDURE q (k : INTEGER) : INTEGER =
BEGIN

IF 16 > k
THEN i := p (k) ;

RETURN k
ELSE PRINT k ;

RETURN 0
END

END

BEGIN

RETURN q(j) ;
END

END

BEGIN

i := 0 ;
p (i + 1)

END

For this task, assume that each 〈DeclList〉 provides all of the names it
defines to its associated 〈Block〉, as well as to all of the inner scopes of its
〈Decl〉 members. For procedures, the names defined by such a 〈DeclList〉
are only the procedure names, but not parameter names.

(b) List all the variables and procedures visible in each of the scopes you
marked.

(c) (Skill 5.1) Write a Mystery program that illustrates the advantages of
dynamic scoping. Explain.

(d) (Skill 5.1) Re-write your program to use static scoping. Explain how you
converted your program.

(e) (Skill 6.1) Did you assume any particular parameter passing mode or
modes? If so, which mode(s) and why?

11th June 2007 3

CSCI 3155 Exercise sheet #5 (v2): Scoping and Parameter Passing

11th June 2007 4

CSCI 3155 Exercise sheet #5 (v2): Scoping and Parameter Passing

Exercise 4. The C programming language comes with a specialised sublanguage,
called the C preprocessor (or just cpp for sort). cpp programs are C programs
extended with a small number of constructs. When compiling cpp programs,
first cpp is invoked, then the C compiler.

cpp provides the following basic constructs (among others):

#def ine V n

Define the name V as n

#def ine P(X) f (X)

Define the subprogram P with formal parameter X to mean f(X) (where the X

refers to the formal parameter).

#undef V

“Un-defines” the definition associated with the name V; required before re-
defining a previously defined name.

Consider the following cpp program:

i n t f (i n t x)
{

p r i n t f (” f \n”) ;
r e tu rn x ;

}

#def ine V f (2)
#def ine P(X) p r i n t f (”%d , %d , %d\n” , X, X, V)

#undef V
#def ine V f (3)

i n t main (i n t argc , char ∗∗ argv)
{

P(V) ;
}

The program, when compiled and executed, prints the following output:

f

f

f

3, 3, 3

(a) (Skills 6.1, 6.3 (applied to a non-Mystery language)) What param-
eter passing mode does cpp use? Explain.

(b) (Skills 5.1, 5.3 (applied to a non-Mystery language)) What scoping
mechanism does cpp use? Explain.

11th June 2007 5

CSCI 3155 Exercise sheet #5 (v2): Scoping and Parameter Passing

11th June 2007 6

