
CSCI 3155: Principles of Programming Languages
Exercise sheet #7

13th June 2007

Group name:

Pointers, References, Arrays

Exercise 1. Arrays are a fundamental part of many efficient algorithms and
included in all major programming languages. While they tend to behave sim-
ilarly even in different languages, there are a couple of smaller differences that
we will examine in this exercise.

(a) (Skill 8.1) What is the difference between heap-dynamic and stack-dynamic
arrays, and how can programmers take advantage of this difference?

(b) (Skill 2.4) Does Mystery support (non-fixed) stack-dynamic arrays?
Explain.

1

CSCI 3155 Exercise sheet #7: Pointers, References, Arrays

Exercise 2. Consider the following Mystery program:

TYPE T0 = [1 TO 1 0] ;

VAR X : ARRAY T1 OF INTEGER ;

VAR Y : ARRAY T1 OF INTEGER ;

VAR Z : [5 TO 2 0] ;

TYPE T = [5 TO 2 0] ;

TYPE T2 = ARRAY [1 TO 15] OF T;

VAR AB : T2 ;

VAR AC : ARRAY [1 TO 15] OF T2 ;

VAR AD : ARRAY [1 TO 15] OF [5 TO 2 0] ;

VAR AE : ARRAY [1 TO 15] OF T2 ;

VAR W : INTEGER ;

BEGIN

W := 1 ;
X[W] := W; (∗ 0 ∗)
X := Y; (∗ 1 ∗)
AB[1] := Z ; (∗ 2 ∗)
AC := AD; (∗ 3 ∗)
AD[1] := AB; (∗ 4 ∗)
AE := AC; (∗ 5 ∗)

END

Assume that INTEGER values are coerced to subrange types and checked at
runtime.

(a) (Skill 7.7) Mark all the places in which type constructors construct a new
name with distinct labels.

(b) (Skills 7.7, 7.6) Assume that TYPE declarations create transparent aliases
(i.e., TYPE declarations are expanded before comparison). Further assume
by-name equivalence for subrange types and structural equivalence for
arrays. Which lines will trigger errors, and why? Use your labels to
explain the reasons.

(c) (Skills 7.7, 7.6) You re-run with a different Mystery implementation.
Now you observe type errors (only) in lines 3 and 4. Find a set of type
equivalence rules that explains this behaviour.

13th June 2007 2

CSCI 3155 Exercise sheet #7: Pointers, References, Arrays

13th June 2007 3

CSCI 3155 Exercise sheet #7: Pointers, References, Arrays

Exercise 3. You are asked to develop a language for a real-time system (i.e., a
language that must have predictable performance behaviour). The system must
provide dynamic memory allocation with implicit heap management.

(a) (Skill 9.4) What approach do you choose, and why?

(b) (Skill 9.4) Describe the disadvantages of your decision, and give an ex-
ample where your decision is inferior to the alternative.

Exercise 4. Not all languages use garbage collection: C, C++ and Pascal ask
programmers to handle memory themselves.

(a) Argue in favour of explicit heap management, and give an example that
demonstrates its superiority to implicit heap management (garbage col-
lection).

(b) (Skills 9.2, 9.3) Using our criteria, argue in favour of implicit heap man-
agement and explain why it is superior to explicit heap management. Make
sure to enumerate all problems that implicit heap management solves, by
name, and describe them briefly.

13th June 2007 4

