
Program Metamorphosis

University of Colorado at Boulder
Technical Report CU-CS 1036-07

Christoph Reichenbach∗

reichenb@colorado.edu

Amer Diwan

diwan@colorado.edu

December 4, 2007

Abstract

Modern agile software engineering practices encourage program-
mers to refactor their code frequently. Consequently, modern inte-
grated development environments incorporate machine support for refac-
toring; such machine support takes the form of automatic program
transformations that atomically preserve program behaviour.

This approach to refactoring is useful, but limits the approach in
two ways: first, existing refactoring tools enforce that each individual
step preserves behaviour– which can be too restrictive. Secondly, such
tools cannot permit behaviour-enhancing changes, even though such
changes are both desirable and automable.

We present an extension to refactoring that addresses both of the
above limitations, by (1) relaxing behaviour-preservation checks to oc-
cur only after sequences of transformations rather than before each in-
dividual transformation, and by (2) permitting users to accept rather
than to correct some of the behavioural changes that accumulate dur-
ing such transformation sequences.

We evaluate our approach, which we call “program metamorpho-
sis”, by applying it to the task of structural and nominal transfor-
mations of Standard ML programs. We find that our approach (1)
can effectively assist programmers in the refactoring process whilst
eliminating the aforementioned shortcomings of traditional refactoring
systems, (2) can be implemented efficiently, and (3) fully subsumes
traditional refactoring.

∗Supported by NSF Career Grant CCR-0133457

1

1 Motivation

Modern programming methodologies, such as Extreme Programming [3],
use refactorings to prepare software for impending changes or to eliminate
“bad smells” in source code. Fowler et al. [6] defines refactorings as:

A change made to the internal structure of software . . . without
changing its observable behaviour

To automate this process, modern IDEs such as Eclipse [15] and refactoring
engines such as HaRe [9] provide machine support for refactoring. These
systems implement refactorings as a pair 〈P, t〉: if the precondition P holds
for a given program, the IDE can apply the transformation t to that pro-
gram [8, 10]. If P does not hold, the IDE disallows the transformation. The
underlying assumption is that whenever P holds, t will preserve behaviour.

This approach allows refactoring engineers to build refactorings that are
sufficiently conservative to be safe. Unfortunately, it sometimes also forces
them to be too conservative:

1. Many practical refactorings require multiple steps to complete. Con-
sider moving a field and related methods via the “Move Method” and
“Move Field” refactorings [6]: if the field is invisible outside of the
current class, we cannot move it separately from the methods, unless
we introduce auxiliary “getter” and “setter” operations that the user
will later have to remember to remove again. With many fields or
mutually recursive methods, the problem is exacerbated; users may
find it easier to abandon the safety of refactorings in favour of faster
manual editing.

To fit refactorings such as the above into the “precondition and trans-
formation” framework, refactoring developers must construct large and
complex refactorings. However, such refactorings are harder for users
to comprehend, predict, and apply.

2. By definition, refactoring must not permit observable behavioural change.
This means that even program modifications that fit within the scope
of what refactoring transformations can accomplish– such as renaming
a method in a public library API, or eliminating or introducing calls
to a logging mechanism– are not permissible. This creates a dilemma
for designers of refactoring engines: should they obey the definition of
refactorings, or should they maximise the utility of their systems?

2

We propose an alternative to refactoring that addresses both of the above
limitations, without losing the advantages of refactoring.

Our approach is based on the idea of eliminating a need for preconditions,
thereby permitting free-form program manipulation. To ensure behaviour
preservation, we compare the current program behaviour against the initial
program behaviour. This gives us the flexibility to perform refactorings in
multiple steps.

In this process, the initial program behaviour has the effect of a desired
“goal behaviour” for the transformation. We permit users to expressly up-
date this desired program behaviour, thereby altering the behaviour that our
system enforces.

Since our approach is strictly more powerful than refactoring, we give it
a different name, program metamorphosis.

Our contributions are the following:

• We present program metamorphosis, a novel approach to refactoring
and user-controlled behaviour evolution.

• We illustrate how our approach arises naturally out of traditional
machine-supported refactoring, and how program metamorphosis is
superior:

– Program metamorphosis subsumes traditional refactoring and can
act as a toolkit for implementing traditional refactoring from
scratch.

– Program metamorphosis is more flexible in that it (a) does not
need to enforce behaviour-preservation after each individual trans-
formation and (b) permits (user-mandated) behavioural evolu-
tion.

– Program metamorphosis allows transformation developers to ig-
nore “fixup heuristics” (Section 2.5): existing refactoring tools
must often heuristically apply implicit refactorings to enable the
preconditions of user-selected refactorings; this need disappears
in program metamorphosis.

• We derive an abstract implementation strategy that makes our ap-
proach practical and show that it subsumes traditional refactoring.

• We describe two concrete implementation strategies and discuss our
experiences with them.

• We report execution times for program metamorphosis to illustrate
that the approach is practical.

3

The rest of this paper is organised as follows. Section 2 introduces the
concept of program metamorphosis on a high level. Section 3 illustrates our
approach with an example, based on a subset of SML. Section 4 describes
how we can efficiently implement refactoring. Section 5 gives an extended
example of the implementation mechanism, describing our prototype. Sec-
tion 6 evaluates our prototype implementation. Section 7 discusses practical
differences between our approach and refactoring. Section 8 reviews related
work, and Section 9 concludes.

2 From Refactorings to Program Metamorphosis

Refactorings have proven to be invaluable tools for software engineers. How-
ever, refactorings are limited in a number of ways. Our approach, program
metamorphosis, eliminates two of these limitations while retaining the inher-
ent advantages that refactorings offer over manual program manipulation.
First, program metamorphosis allows behaviour evolution. Secondly, pro-
gram metamorphosis permits behaviour-preserving program manipulation
with fewer restrictions than refactoring.

In the following, we recapitulate the traditional implementation strategy
for refactoring, illustrate the shortcomings of this strategy in more detail,
and contrast it with program metamorphosis.

2.1 How Refactorings Work

Abstractly, a refactoring is a pair 〈P, t〉. P is a safety precondition that
determines whether or not the refactoring is applicable to a given program.
t transforms the program (e.g., renames a variable).

Since refactorings must preserve behaviour, P must ensure that the pro-
gram has the same behaviour before and after applying t:

P (p) =⇒ Jt(p)K = JpK

where J−K assigns a program its behaviour. Refactoring implementors typ-
ically implement P by considering the possible ways in which t may alter
program behaviour and then design P to detect these. P ’s implementation
then relies on one or more program analyses that uncover relevant properties
about the program. Thus, internally P is the following:

P (p) =⇒ cP (properties(p))

4

where properties computes all properties that are relevant to the refactor-
ing and some check cP determines whether the properties will guarantee
behaviour preservation.

Since properties is a collection of program analyses and fully precise pro-
gram analyses are undecidable in general, refactoring designers are forced
to make a decision: if they construct a conservative implementation of
properties, they will have a sound refactoring system but may disallow a
number of correct refactorings. On the other hand, if they construct an
unsound properties, they may allow a large number of transformations, but
will not be able to guarantee behaviour preservation. While existing refac-
toring tools (with the possible exception of HaRe[9]) are not conservative,
conservativeness (and therefore guaranteed behaviour preservation) remains
the underlying motivation behind refactoring, and therefore an ideal for all
refactoring tools.

2.2 Multi-step Transformations and Refactorings

However, this ideal is sometimes inconvenient. This inconvenience manifests,
for example, with refactorings that do not commute. Consider method in-
lining: inlining may require variable renaming to avoid name capture. If we
rename first, the refactoring is behaviour-preserving, but if we inline first,
it is not. In practice, it is hard for users to predict all the names captured
by an inlining transformation: it would be easier to inline first and sort out
problems later, when we can directly observe any conflicts.

More severely, some refactorings are inapplicable to the problems they
are meant to solve. Consider moving two mutually recursive procedures from
one module to another. With a “Move Procedure” refactoring, we expect
this transformation to require two steps, one for each individual move. But
if we move only one procedure, the procedures will not be able to call each
other, and thus we will not preserve behaviour. Consequently, we must move
both simultaneously to preserve behaviour.

Existing refactoring systems either ignore these problems, completely
disallow such transformations, or try to address them by using ad-hoc so-
lutions: For example, Eclipse’s Inline Method refactoring will implicitly re-
name “offending” variables if they would otherwise cause name capture,
using sound but arbitrary heuristics to pick variables and new names.

As an alternative to these approaches, we could explicitly support multi-
step transformations. Composing traditional refactorings [8] will not allow
us to resolve circular dependencies as in the above, but composing transfor-
mations separately from predicates would. For example, we might compose

5

refactorings 〈P1, t1〉, . . . , 〈Pn, tn〉 as

〈composeP(〈P1, t1〉, · · · , 〈Pn, tn〉), tn ◦ · · · ◦ t1〉

where composeP constructs some new predicate that covers the full sequence
of transformations.

However, this approach is still undesirable: it requires users to think
through the full sequence of refactorings in advance, since each refactoring’s
preconditions may require additional preceding refactorings.

2.3 Towards Program Metamorphosis

Our approach, program metamorphosis, solves the above problem by aban-
doning the traditional approach to refactoring. Program metamorphosis is
based on two key insights:

1. Using postconditions instead of preconditions allows users to exper-
iment, rather than having to predict the outcome of a sequence of
transformations: if we check for behaviour preservation after trans-
forming, we can visualise the updated (possibly incorrect) program
and allow users to pick the next transformation with complete knowl-
edge of the effect of the preceding transformations.

2. We can construct an appropriate postcondition by logical decomposi-
tion of preconditions: this allows us to build a “composeP” function
for postconditions.

The following equation summarises our first insight, for a postcondition Q

Q(t(p)) =⇒ Jt(p)K = JpK

As befits a postcondition, we apply it to the transformed program, rather
than to the original program.

To see the second insight, recall the intuitive idea behind preconditions
and postconditions: these conditions ensure that the program has the same
behaviour before and after the transformation, and is well-formed before
and afterwards. In short,

P (p) ⇐⇒ Q(t(p)) ⇐⇒ V (p) ∧ (p ≡ t(p)) ∧ V (t(p))

where V ensures well-formedness and (≡) approximates behavioural equiv-
alence between two programs.

6

p

p1 p′

Figure 1: Program metamorphosis. Vertices represent programs; programs
are well-formed (V) precisely if they are black vertices. Solid edges represent
possible program transformations. Dashed lines represent the equivalence
classes of (≡).

Preconditions are not normally implemented as instances of the above
formula, though we can re-write them appropriately (as Section ?? points
out, this does not limit our approach.)

If we take this idea one step further, we arrive at program metamorpho-
sis. First, observe that the meaning of program validity is generally indepen-
dent of which refactoring it is implemented for. Secondly, we can meaning-
fully combine the equivalence relations we find within disparate refactoring
preconditions (this is not completely straightforward, cf. Theorem 1). We
can now decouple equivalence and validity checking from applying program
transformations: this is program metamorphosis.

To visualise the benefits of this approach, consider Figure 1: each solid
edge here represents a program transformation. Programs are equivalent iff
they are elements of the same equivalence class (marked by dashed lines).
In this picture, refactoring is precisely the process of moving along the solid
edges in this graph from one point in an equivalence class to another in
the same class (“with the same behaviour”). In program metamorphosis we
may choose any sequence of transformations t = t1 ◦ · · · ◦ tn such that

Q(t(p)) ⇐⇒ V (p) ∧ (p ≡ t(p)) ∧ V (t(p))

In particular, we can traverse through other equivalence classes (programs
with different behaviour) and even through ill-formed programs. By con-
trast, with classical refactoring we must choose t to be a single transfor-
mation. If we want to refactor p to p′ in Figure 1, we thus need one extra

7

step to reach p′, and we can never reach p1, even though it is semantically
equivalent to p.

2.4 Soundness and Derivation

We can summarise our above observations as follows:

Definition 1. A (program) metamorphosis system for a language L is a
tuple 〈≡, V 〉 where (≡) : L× L is an equivalence relation, V ⊆ L, and V (p)
whenever the program p is well-formed.

Equivalently, we can combine the notion of a program metamorphosis
system with the properties function that refactorings use. This function
maps a program to a “program model”, a set of M ∈ M of relevant pro-
gram properties. For a given metamorphosis system, a metamorphosis sys-
tem with properties is then simply a tuple 〈M, properties,≡M, VM〉 with
properties : L→M where

V (p) ⇐⇒ VM(properties(p))

p1 ≡ p2 ⇐⇒ properties(p1) ≡M properties(p2)

For speculative metamorphosis systems, the above is sufficient. In practice,
we usually want our systems to preserve behaviour:

Definition 2. A program metamorphosis system is sound wrt a language
semantics J−K iff, for all programs p, p′ ∈ L,

V (p) ∧ p ≡ p′ ∧ V (p′) =⇒ JpK = Jp′K

Conveniently, we can construct metamorphosis systems from refactoring
preconditions such that the metamorphosis systems are sound whenever the
refactoring preconditions are conservative. Recall our earlier decomposition
of preconditions:

P (p) ⇐⇒ V (p) ∧ (p ≡ t(p)) ∧ V (t(p))

If we set (≡) = (≡J−K), where a ≡J−K b ⇐⇒ JaK = JbK, we have the
“perfect” predicate for any refactoring. This relation is not computable,
so we must choose another. If we choose not to be conservative (i.e., if
we do not guarantee behaviour preservation), we may pick any relation.
If we are conservative, we must pick a (≡) ⊂ (≡J−K), i.e., a conservative
approximation that distinguishes some programs that would be semantically
equivalent. If we are conservative, we can now show the following:

8

Theorem 1. Given the decomposition of refactoring preconditions P1, . . . , Pn,
we can construct a metamorphosis system that is sound if P1, . . . , Pn are con-
servative, and allows at least as many transformations as P1, . . . , Pn allow.

Proof. Let (≡1), · · · , (≡n) be the equivalence relations used in P1, . . . , Pn.
Then we set

(≡) = (≡1) ∪ · · · ∪ (≡n)

All (≡i) are conservative approximations of (≡J−K), so (≡) inherits this prop-
erty. Furthermore, for any programs p1, p2 we have that p1 ≡i p2 (1 ≤ i ≤ n)
implies p1 ≡ p2.

2.5 Multi-step Transformations in Practice

What happens if the postcondition Q fails after a sequence of transforma-
tions? Apart from requiring users to manually satisfy Q, we have several
choices, listed below:

(i) Disallowing/retracting transformations that fail to preserve behaviour
is a straightforward strategy.

(ii) Heuristically applying supporting transformations is another strategy
that existing refactoring tools, such as Eclipse, employ, albeit for tradi-
tional refactorings. These tools predict conflicts that will happen and
heuristically pre-apply other refactorings that will avoid such conflicts.
The resulting heuristics may have undesired side-effects; if so, the user
must undo the heuristic changes later.

While program metamorphosis is also amenable to heuristics, they are
not necessary, so we do not explore this concept here.

(iii) Searching for recovery plans is another possible strategy: therein, we
search the space of all possible transformation sequences to find those
that will satisfy the postcondition. Users can then pick which plans (if
any) they want to enact. Such an approach falls within the realm of
AI Planning ; to be practical, it requires heuristics that can guide the
planning process. In this paper, we do not investigate such planning
heuristics in detail.

(iv) Accepting behavioural change is another strategy, unique to program
metamorphosis. This option is useful in many practical scenarios, such
as intentionally changing a public library API, re-ordering side effects
that the user deems independent (such as log output), or even just as

9

an override mechanism in situations where the user wants to manually
intervene because the system is lacking the transformations she needs.
Whatever the reasons for accepting change, the user must explicitly
permit such changes.

The most straightforward way to implement behavioural change is to
override the final equivalence check. This implementation is simple
but dangerous, as we override all behavioural changes at once. We
propose an alternative approach, wherein users acknowledge individual
behavioural changes. We describe this approach in Section 4.2.1.

2.6 Summary

In summary, we can construct a program metamorphosis system from a set
of refactorings by extracting the inherent equivalence relations and fusing
them into a single universal postcondition.

We then gain the following benefits:

1. Deferred equivalence checking: programmers can refactor via sequences
of transformations.

2. Behaviour evolution: users can deliberately alter program behaviour
during metamorphosis.

3. Decoupled behavioural equivalence and transformations: we can now
safely add new transformations without having to consider behavioural
equivalence. Conversely, any refinements we add to behavioural equiv-
alence benefit all transformations.

3 An Example

To see how program metamorphosis might function in practice, consider the
following Standard ML [12] code fragment, here presented together with its
referencing environments:

Suppose that the programmer wants to swap the names of “result” and
“num”. The obvious approach of using two rename refactorings [6], one to
rename “result” to “num” and the other to rename “num” to “result”, does
not work: Renaming “result” to “num” causes the expression num + 1 to
use the wrong “num” due to name capture, and renaming “num” to “result”
causes name capture in x + result. In other words, naively composing two
rename refactorings does not solve the problem, and therefore traditional
refactoring (as implemented in e.g. HaRe [9], Eclipse [15], and IntelliJ) is

10

va l num = 23
va l result = f(42)
va l x =

num + 1

va l k =
x + result

ℓ⊤

ℓ0

ℓ1

ℓ2

ℓ3
ℓ4

ℓ5

Figure 2: An SML example, together with its scoping structure.

insufficient. This is a straightforward example of a situation where program
metamorphosis can help.

Let us try to construct a program metamorphosis system for such name-
based transformations: an appropriate metamorphosis system must handle
name analysis, usually the first stage of semantic program analysis. Cor-
respondingly, its equivalence relation (≡) should be defined on the results
of name analysis. This system need not support any other kinds of equiva-
lence, so we can require syntactic equivalence for the remaining parts of the
program. Then, our metamorphosis system looks as follows:

• properties (the program properties abstraction) represents names by
unique identifiers, matching up identifier uses with their corresponding
definitions. The properties we need to represent are the following:

– Name bindings, mapping unique identifiers to their names. Here,
identifiers are unique objects we introduce for each variable defi-
nition. For example,

l e t va l v = 0
i n l e t va l v = 1 . . .

uses only one name, but contains two identifiers. We write i
n
7→ n

to relate identifier i to name n.

– The definitions of identifiers, associating identifiers with the pro-
gram locations that define them. Def(i, ℓ) indicates that i is de-
fined at ℓ.

– The uses of identifiers, relating identifiers to program locations
that use them. Use(i, ℓ) indicates that i is used at ℓ.

– Scope enclosure, which relates two locations to express the pro-
gram’s scoping structure. We use the binary infix relation ℓ′ ≺ ℓ

11

to describe that the location ℓ′ is the location of the immediately
enclosing scope of location ℓ. Figure 2 shows the scoping struc-
ture of our program. The nodes on the right-hand side represent
program locations, the dashed lines indicate the connection be-
tween the locations and the source program, and the solid arrows
between the location nodes represent the relation (≺), i.e., scope
enclosure.

• VM (the validity check) ensures that the program contains no name-
based inconsistencies, such as name capture.

• (≡M), finally, compares two results of properties to see whether and
how their individual names and uses can be matched up, i.e., whether
the program structure is isomorphic.

With program metamorphosis, swapping the names of “num” and “result”
becomes easier. First, consider how we represent the definitions and uses of
“num”:

Def(inum, ℓ0),Use(inum, ℓ3)

These two directly relate “inum”, the identifier we use for the initial “num”,
to its definition and its one use in Figure 2. The properties for “result” look
similar:

Use(iresult, ℓ5),Def(iresult, ℓ1)

Let us first rename “result” to “num”, both in its use (line 4 in the ML
program and ℓ5 in the model) and in its definition (line 2 and ℓ1). As a
result, iresult at line 2 (ℓ1) now captures inum from line 1 (ℓ0), so that the
reference to “num” in line 3 (ℓ3) references the wrong identifier. This yields
a single change in the resulting program model: we now have Use(i′

result
, ℓ′3)

instead of the Use(i′num, ℓ′3) we expected.
But the metamorphosis system lets us continue, so we now rename “num”

in lines 1 and 3 to “result”. This resolves the name capture; after two steps,
we encounter a program model isomorphic to the one we started out with
and are done.

4 Abstract Implementation Strategy

Our example illustrated what a program metamorphosis system might look
like, but the example exposed two weaknesses in the straightforward imple-
mentation:

12

Program
Progr
Model

Program
Model

Desired Program Model

User Transform

Inconsistency
Checks

(≡M) and V

Inconsistencies

Figure 3: Inconsistency detection process for stateful program metamorpho-
sis.

1. We had to re-compute the program model after each transformation.
Apart from being inefficient, this may be hard if the intermediate
program is invalid.

2. By recomputing the program model, we could not directly compare
information from the initial program with the modified program: in
our example, we had to resort to an isomorphism check to indirectly
determine that “something” was going wrong. If we had retained
information from the initial model, we could have associated location
ℓ3 with the desired use of inum; we could then have established the
inconsistency directly and locally by finding that the name of num
resolves to iresult at ℓ3 instead.

For the above reasons we find it useful to retain all or part of the pro-
gram model from previous steps. In the following, we introduce program
metamorphosis systems that employ this approach, and give an extended
example.

4.1 Stateful Program Metamorphosis

Recall our earlier notion of a program model M ∈ M: such M describe
program semantics by representing all relevant program properties. Our
function properties : L → M computes these models via standard program
analysis techniques, and (≡M) determines whether two elements of M are
equivalent in the sense that they describe programs with the same behaviour.
If we could now predict the effect that individual transformations t have on
program models from M, we could significantly simplify our equivalence
checks: we would only have to reconsider the altered parts of the model
when determining validity and equivalence.

13

We achieve this with an architecture as shown in Figure 3. From the
original program, we derive a desired program model. This we copy into a
(current) program model. Whenever the user transforms the program, we
simultaneously update the current model. We can then check the current
model for validity and for equivalence with the desired model, and report
inconsistencies whenever they arise.

To transform model and program in parallel, we pair each transformation
t : L→ L with a model transformation tm :M→M that captures the effect
of t on program models– consequently, we require that properties ◦ t = tm ◦
properties. In practice, we can find representations for M and tm that allow
us to efficiently compute differences between M and tm(M) (cf. Section 4.3).

Since this implementation strategy allows us to retain much of the pre-
vious analysis state, we call it stateful program metamorphosis; in the re-
mainder of this document, we focus on this strategy.

Note that the improved efficiency we gain from retaining state comes
at a price: we lose the pleasant property that the correctness of a program
metamorphosis system is independent of the transformations it provides,
and we need to require additional information from transformations (namely
model transformations). Both losses are modest when compared to the
benefits we retain over traditional refactoring systems.

4.2 Properties of Stateful Program Metamorphosis

On a high level, our stateful strategy seems convenient, but it may not be
obvious how we can apply it in practice. What would the state of such
a system look like? Can we incorporate all properties we are interested
in? And do we have to model the entire behaviour of the program for
metamorphosis? Before adopting this strategy, we should examine the above
questions more closely.

We begin with the last of these questions: stateful program metamor-
phosis systems need not model the entire behaviour of the program. In fact,
we generally assume that stateful metamorphosis systems split the program
behaviour into the program model (i.e., M ∈ M), which they retain, and
secondly the rest, which they expect transformations to preserve. Unfortu-
nately, it is not clear what this latter requirement means: let’s say that we
are transforming one invalid program to another; how can this step possibly
“preserve” any behaviour?

We work around this question by giving our programs a proto-semantics,
as follows:

14

L L

R R

R′ M R′M

R R

t

[(−)] [(−)]

tM

�

J−KR J−KR

J−KL J−KL

}

if V

Figure 4: Overview of the construction of stateful program metamorpho-
sis, for Section 4.2. L is the programming language, R = 〈M,R′〉 is the
protosemantics, with M being the class of program models (we mirror this
presentation for the left R). Note that properties (not presented here) is
[(−)] followed by left projection; thus properties ◦ t = tM ◦ properties. J−KL

and J−KR are not total.

Definition 3. Assume a language L with a validity predicate V and seman-
tics J−KL. A proto-semantics of L is some R with two mappings [(−)] :
L → R and J−KR such that [(p)] is well-defined for all p and JpKL = J[(p)]KR
whenever V (p).

(In the following, we drop the subscripts whenever the semantics function
is unambiguous.) The intuition behind the above definition is that we have
something “less” than a full denotational semantics in the sense that we
don’t necessarily map programs with identical meaning to the same objects.
However, our proto-semantics is defined for all programs, irrespectively of
their validity, and we require it to respect our “normal” notion of semantic
equivalence.

We can now choose our R as a categorial product, to split between the
program model and the rest of the semantics. For simplicity of exposition,
we choose a more concrete formalisation:

Definition 4. Let R be an indexed family of relations Ri with 1 ≤ i ≤ n.
Let R be the set of all R, and assume functions J−KR and [(−)]. The triple
〈R, J−KR, [(−)]〉 is a relational proto-semantics for language L with semantics
J−KL iff it is a proto-semantics of L.

Such relations may relate identifiers with their names or with their defin-
ing locations; they may relate modules with their bodies or their surrounding

15

modules, types with their supertypes or basic blocks with their dominators.
They may even relate noncomputable objects, such as identifiers with their
denotational semantics.

Relational proto-semantics are sufficiently expressive for anything we
can represent in set theory. They also give rise to a straightforward strategy
for splitting “covered” from “non-covered” semantics, which we write R =
M,R′ whereM is again our program model (the “covered” part) and R′ is
the rest. More precisely, we choose (without loss of generality) some k with

M = {〈r1, . . . , rk〉|〈r1, . . . , rn〉 ∈ R}

R′ = {〈rk+1, . . . , rn〉|〈r1, . . . , rn〉 ∈ R}

This split is practical:

Theorem 2. For any computable properties we can find a relational proto-
semantics R that can be split as R =M,R′ such that M contains precisely
the computable properties we seek.

Proof. Relational proto-semantics is sufficiently powerful to encompass all
computable properties, so we only need to show that we can find a split that
encodes precisely the computable properties we are interested in as part of
M. We take an arbitrary split (which trivially exists with R′ = 1 and M
encoding the language syntax) and iterate: as long as some relation in M
may contain relations that are not computable or describes properties we
are not interested in, we push the relation to R′. Whenever R′ contains a
relation R with information we are interested in, we choose an isomorphic
〈RM , RR〉 ∼= R, where RM is a computable approximation of the properties
we want, and add RM to M and RR to R′.

In the following, we focus on relational proto-semantics and use the
notation 〈Mp, Rp〉 = [(p)] to conveniently express the split proto-semantics of
a program as justified by the above discussion.

Since our proto-semantics provides us with bothM and with the infor-
mation missing fromM, it is natural to wonder how it relates to our equiv-
alence relation (≡M) and to properties. We find that the proto-semantics
gives us a natural way to define both. properties(p) is simply Mp from
〈Mp, Rp〉 = [(p)]. (≡M) is more tricky. Let us first construct an auxiliary
proto-semantic equivalence relation (≡R) as follows:

[(p)] ≡R [(p′)] =⇒ V (p) ∧ V (p′) =⇒ JpK = Jp′K

16

(≡R) is thus an arbitrary conservative approximation of the kernel of J−K,
whenever the programs it considers are valid.

Then, the relation (≡M) is a conservative approximation over some (≡R

), and we can characterise it as being agnostic of the R′ part of the proto-
semantics as follows:

Definition 5. A relation (≡M) approximates a proto-semantic equivalence
relation (≡R) on M whenever

p ≡M p′ ⇐⇒ ∀x ∈ R′.〈Mp, x〉 ≡R 〈Mp′ , x〉 (1)

Lemma 1. Let (≡1), (≡2) be proto-semantic equivalence relations. Then
there exists a proto-semantic equivalence relation (≡1,2) such that (≡i) ⊆
(≡1,2), i ∈ {1, 2}, and all (≡M) that approximate (≡1) and (≡2) on M
approximate (≡1,2) on M.

Proof. We construct (≡1,2) = (≡1) ∪ (≡2).

With this, we are finally ready to define soundness of transformations:

Definition 6. A predictive transformation for a given stateful program
metamorphosis system is a tuple 〈t, tm〉 where t : L→ L and tm :M→M.
A predictive transformation is

1. consistent whenever properties ◦ t = tm ◦ properties

2. covered whenever, for all p ∈ L with 〈Mp, Rp〉 = [(p)], there exists some
proto-semantic equivalence relation (≡R) approximated by (≡M) such
that

∀x.[(〈Mp, x〉)] ≡R [(〈tm(Mp), x〉)] =⇒ [(p)] ≡R [(t(p))]

3. fully covered whenever [(t)] = 〈tm, id〉

4. sound whenever it is consistent and covered.

Lemma 2. Any fully covered transformation is sound.

We can now show the correctness of stateful metamorphosis:

Definition 7. A stateful (program) metamorphosis system is a program
metamorphosis system with properties and with an accompanying relational
proto-semantics.

17

Theorem 3. A stateful program metamorphosis system guarantees the preser-
vation of behaviour if all of its transformations are sound. Specifically, for
any sequence of transformations t = tn ◦ · · · ◦ t1,

V (p) ∧ V (t(p)) =⇒ [(p)] ≡M [(p(p))] =⇒ JpK = Jt(p)K

Proof. We show the above property indirectly, by proving that [(p)] ≡M

[(t(p))] =⇒ [(p)] ≡R [(t(p))] (which implies the desired property). In our proof,
we encounter multiple proto-semantic equivalence relations; by Lemma 1,
this is not a problem. Induction anchor : Here, t = id; this case is trivial.
Induction step: Assume [(p)] ≡M [(t(p))] =⇒ [(p)] ≡R [(t(p))]. Let t′ be a
sound predictive transformation. To show [(p)] ≡M [(t′ ◦ p(p))] =⇒ [(p)] ≡R

[(t′ ◦ t(p))] we consider two possibilities: if [(p)] ≡M [(t′ ◦ p(p))] does not hold,
we are done. Otherwise this formula entails the premise of the coveredness
property of t′, which then implies [(p)] ≡R [(t′ ◦ t(p))].

We did not need the consistency property of our transformations for the
above proof, since we only require this property to speed up implementations
of stateful program metamorphosis.

The above results tell us that we can use stateful program metamorphosis
to model all interesting program properties, as long as they are computable,
and they give us a meta-theory for proving the soundness of transforma-
tions in such a system. In particular, we find that transformations that
are fully characterised by their model transformations are implicitly sound
(Lemma 2).

4.2.1 Explicit Behavioural Changes

In addition to the properties we discussed above, stateful metamorphosis
gives rise to a convenient means for evolving behaviour, one of the central
premises of program metamorphosis.

Consider two Java classes

c l a s s A {
pub l i c s t a t i c Objec t mkA() { . . . }

}
c l a s s B {

Objec t o = A.mkA() ;
}

If A is part of a library, the refactoring developer might not be aware of
class B. Let us now assume that the refactoring developer renames mkA to

18

genA: this will break the external code in class B, and should therefore be
considered a behavioural change.

The above renaming is an example of renaming publicly visible methods,
which in turn is an example of a transformation with potential behavioural
change.

Whenever the current program model disagrees with the desired program
model about the library exports, we can give users the option to update the
desired program model to indicate agreement with the observed change.

4.3 Ad-Hoc Implementation of Stateful Program Metamor-

phosis

Stateful program metamorphosis can be implemented in many ways; one
straightforward approach is to manually implement program analyses and
represent analysis results in a way that is optimised for quick inconsistency
detection. We refer to this approach as “ad-hoc implementation”, since it
requires no formal structure.

To give an example of the ad-hoc approach, consider the implementation
of one of our two prototypes for SML refactoring (cf. Section 5): This system
is based on a program dependence graph [5] that we construct from the pro-
gram (similarly to traditional refactoring approaches such as Griswold’s [7]).
We annotate program locations with all relevant properties, including

• The complete local referencing environment, represented as a splay
tree [16] based map.

• A set of exported identifiers and names, for each module and for the
toplevel declaration sequence.

Storing the local referencing environment helps us to perform partial
updates: whenever a property changes due to a transformation, we update
only the affected subgraphs of the program, though further bookkeeping is
required to properly maintain the list of inconsistencies.

4.4 Stateful Program Metamorphosis in Datalog

Another possible strategy for implementing program metamorphosis is to
use Datalog [18, 20]. Our first prototype was based on this approach, but
we found it necessary to abandon its implementation due to significant per-
formance problems.

19

Nonetheless, Datalog offers two advantages over the ad-hoc implementa-
tion approach: First, Datalog can be formalised easily (modulo negation/s-
tratification) and therefore easily described in terms of relational algebra,
and secondly, it is sufficiently simple to give rise to heuristics for recovery
planning. We do not explore the latter in this document, though we ex-
ploit the former. To simplify our exposition, we will utilise a Datalog-style
relational notation, explaining unusual constructs as we encounter them.

5 Implementing Stateful Program Metamorphosis

for SML

To evaluate our approach, we implemented two prototypes of a refactoring
system based on stateful program metamorphosis, one using Datalog and
another based on an ad-hoc strategy. Both use the SML of New Jersey
frontend [1] for semantic analysis. The implementations represents SML
programs as values of an algebraic datatype and perform AST transfor-
mations and model updates in parallel. Both prototypes cover the same
functionality.

In the following, we describe the concrete program metamorphosis sys-
tem we use in Datalog-style relational terms. Due to space restrictions, we
limit our discussion to the SML subset “Small ML”, introduced in the next
section, and informally describe how we support some of the remaining SML
features in Section 5.2.

5.1 Small ML

Syntactically, Small ML comprises Standard ML let expressions, val and
fun definitions, and identifier occurrences. fun definitions may contain pa-
rameters. As in Standard ML, val and fun definitions may define multiple
identifiers simultaneously (connected via and): simultaneous fun definitions
may be mutually recursive, while simultaneous val definitions cannot see
each other in scope.

In the following, we refer to val and fun definitions (which may contain
multiple definitions via and) as definition blocks.

Small ML is sufficient to showcase many of the issues we deal with while
being complex enough to allow us to discuss the most prominent errors
arising as part of nominal and structural transformations. Moreover, the
solutions we develop for Small ML are either directly applicable or extend
straightforwardly to the entirety of Standard ML, as discussed in Section 5.2.

20

We choose Small ML over other languages such as Mini-ML [4] since most
“restricted ML” variants focus on the dynamic semantics of ML, whereas
our needs are largely due to syntax and static semantics.

In the following, we describe the components of a Datalog-based state-
ful metamorphosis system for Small ML. Section 5.1.1 describes the ground
model we consider, Section 5.1.2 details the program theory, and Section 5.1.3
lists our transformations.

5.1.1 Small ML Program Models

We use the following sorts in our system: Name (the sort of names), Id (the
sort of identifiers), and Loc (the sort of locations).

To support nominal and structural transformations in Small ML, we
require a number of properties expressed as ground relations. Table 1 sum-
marises these relations. Some of the relations we already used in Section 3;
we repeat them for completeness. Below, we discuss some of the more in-
volved relations in detail. We use the notation

R : S1 × . . .× Sn

to mean that R ⊆ S1 × . . .× Sn is a relation between the sorts S1 . . . Sn.

• PDef : Id×Loc. Records definitions of identifiers as parameters. Such
definitions are not visible to subsequent definitions, only to the body
of the definition (transitively reachable via ≺).

• Def : Id×Loc and (⊳) : Loc×Loc. We use Def in a slightly different
sense as in Section 3: (⊳) and Def together represent the definitions of
identifiers with nontrivial scoping rules. Definitions made via Def(−, ℓ)
and ℓh ⊳ℓ are visible to all locations that can reach location ℓh via (≺).
This mechanism allows us to represent recursive and non-recursive
definitions. Consider the following example:

va l i0 = 7
and i1 = 13

ℓs

ℓh ℓ0

ℓ1

We observe the following facts:

{Def(i0, ℓ0),Def(i1, ℓ1), ℓh ⊳ ℓ0, ℓh ⊳ ℓ1, ℓh ≺ ℓs}

To complete the above val definition, we add facts ℓs ≺ ℓ0 and ℓs ≺ ℓ1.
The bodies of i0 and i1 now draw their environments from ℓs and

21

therefore cannot see each other. If we want to model the above as
a recursive definition (e.g., to model a fun or val rec definition), we
instead add the edges ℓh ≺ ℓ0 and ℓh ≺ ℓ1– the bodies of i0 and i1 can
now reach ℓh via (≺), and therefore (via ℓh ⊳ℓ0 and ℓh ⊳ℓ1) access each
other’s definitions. Each definition via Def thus has two edges– a (≺)
edge to the location representing its surrounding environment, and a
(⊳) edge to its associated definition head. Without this indirection,
definitions in mutually recursive definition blocks with n definitions
would need O(n) edges to connect to all other definitions in the block,
for a total of O(n2) edges.

• (⊳) : Loc×Loc, Head : Loc, ValHead : Loc and Val : Loc. These four
relations structure value definition blocks. Recall that each val defi-
nition block may define multiple identifiers, combined by the keyword
and. We associate precisely one location ℓh with each such definition
block; we call ℓh the definition head and mark it with ValHead and
Head. For each defined identifier, we introduce a location ℓb which
we call the definition branch and mark as Val. We then relate each
definition branch ℓb with its unique associated definition head ℓh via
ℓh ⊳ℓb, such that each head may have many branches, but each branch
has precisely one head.

• (⊳) : Loc × Loc, Head : Loc, FunHead : Loc and Fun : Loc. These
four relations structure function definition blocks, analogously to value
definition blocks (except that FunHead is used instead of ValHead and
Fun instead of Val). We mark both kinds of definition heads as Head
but can distinguish them by observing whether they are in FunHead
or ValHead.

5.1.2 Analyses and Inconsistencies for Small ML

The following conditions render Small ML programs invalid, in terms of our
V predicate:

• Ambiguous(ℓ, n): the definition block at ℓ defines more than one iden-
tifier with the name n (val x = 1 and x = 2). Section 2.9 of the Revised
Definition of Standard ML [12] dictates this condition.

• VarCapture(i, ℓu, ℓc): the use of the identifier i at location ℓu is subject
to name capture at location ℓc

22

Relation Meaning

ℓ ≺ ℓ′ Location ℓ immediately precedes ℓ′ in scope

i
n
7→ n Identifier i has name n

Use(i, ℓ) Identifier i used at location ℓ

Def(i, ℓ) The definition of identifier i is at location ℓ

PDef(i, ℓ) Identifier i defined at ℓ as a parameter

ℓh ⊳ ℓb ℓb is definition branch of definition head ℓh

Head(ℓ) Location ℓ is a definition head

ValHead(ℓ) Location ℓ is a val definition head

FunHead(ℓ) Location ℓ is a fun definition head

Val(ℓ) Location ℓ is a val definition branch

Fun(ℓ) Location ℓ is a fun definition branch

Table 1: Ground relations for Small ML

• VarNonReach(i, ℓu): identifier i, used at location ℓu, is not reachable
from ℓu.

• AmbiguousParam(i, n): the function identified by i has multiple pa-
rameters with the same name n.

Figure 5 specifies the rules for deriving these conditions.
We use three auxiliary relations in this figure:

• (≪) : Loc× Loc, which is the transitive closure of (≺).

• ∆ : Id×Loc, where ∆(i, ℓ) states that identifier i is defined at location
ℓ, i.e., ∆ = (⊳ ◦ Def) ∪ PDef.

• Reach : Id×Loc, where Reach(i, ℓ) means that identifier i is reachable
from location ℓ by following (≪) to a location at which ∆ applies, i.e.,
Reach = ∆◦ ≪.

In Figure 5, we see the inference rules for the various error conditions.
Ignoring (for the time being) the use of InLimbo, let us consider the three
rules for inferring inconsistencies in turn:

1. Ambiguous(ℓ, n) holds iff the definition head ℓ has two definition branches
ℓ1, ℓ2 defining distinct identifiers i1 and i2 with the same name n.

2. VarCapture(i, ℓu, ℓc) holds iff identifier i is used at location ℓu, and
defined at ℓ∆, and if there is some other identifier i′ with the same

23

ℓ ⊳ ℓ1 ℓ ⊳ ℓ2 Def(i1, ℓ1) Def(i2, ℓ2) ¬(i1 = i2) i1
n
7→ n

n
← [i2

Ambiguous(ℓ, n)

¬InLimbo(ℓu) ¬(i = i′) ∆(i, ℓ∆) ∆(i′, ℓ′∆)

Use(i, ℓu) i
n
7→ n

n
← [i′ ℓ∆ ≪ ℓ′∆ ℓ′∆ ≪ ℓu

VarCapture(i, ℓu, ℓ′∆)

Use(i, ℓu) ¬InLimbo(ℓu) ¬Reach(i, ℓu)

VarNonReach(i, ℓu)

Def(i, ℓ) PDef(i1, ℓ) PDef(i2, ℓ) i1
n
7→ n

n
← [i2 ¬(i1 = i2)

AmbiguousParam(i, n)

ℓ′ ≺ ℓ

ℓ′ ≪ ℓ

ℓ′ ≺ ℓ ℓ′′ ≪ ℓ′

ℓ′′ ≪ ℓ

∆(i, ℓ∆) ℓ∆ ≪ ℓ

Reach(i, ℓ)

x = x

PDef(i, ℓ)

∆(i, ℓ)
ℓd ⊳ ℓb Def(i, ℓb)

∆(i, ℓd)

Figure 5: Datalog rules for deriving error conditions for Small ML, written
in Natural Deduction style

24

name n as i defined at location ℓ′∆, where ℓ∆ ≪ ℓ′∆ ≪ ℓu. Informally,
we can think of identifier i′ as intervening when we try to determine
the meaning of name n at location ℓu– looking up by name, we will
find i′, since it has masked i in the environment.

3. VarNonReach(i, ℓu) holds iff we use i at location ℓu, but cannot actually
reach it from there.

4. AmbiguousParam(i, n) holds iff identifier i has two distinct parameters,
i1 and i2, which share the name n.

5.1.3 Transformations for Small ML

Figure 6 lists a number of transformations for Small ML. These transfor-
mations subsume a number of standard refactorings, specifically identifier
renaming and definition relocation (Section 6.1). We use the following no-
tation:

t(x1, . . . , xn) =
D

C

means that the transformation t creates all properties listed in C and deletes
all properties listed in D. The user-supplied variables x1, . . . xn are substi-
tuted into C and D.

• rename is the identifier renaming transformation we used previously.
This transformation corresponds directly to rename refactorings, ex-
cept that it has no preconditions. In particular, the program transfor-
mation part of rename simultaneously renames all defining and using
occurrences of the identifier.

This transformation uses two names: the new, user-supplied name n′,
and the old name n. n is not user-supplied: our Datalog prototype
infers all free variables occurring in the deleted properties. Since each
identifier has only one name at any given point in time, n is never
ambiguous.

The remaining transformations support the task of relocating definitions,
as well as eliminating unnecessary definitions.

• elim-def eliminates a definition of identifier i from a branch of a defi-
nition head ℓh; for example, in val a = 1 and b = 2, a single elim-def
might eliminate the definition of either a or b.

This rule has a precondition, namely that i is indeed defined at ℓb (i.e.,
Def(i, ℓb)). We have no special provisions for preconditions but achieve

25

the same effect by listing this property among both constructed and
deleted facts. Thus, the transformation only applies if Def(i, ℓb) holds,
but we retain Def(i, ℓb).

The model effect of eliminating the definition at ℓb from the program is
that the (⊳) relation from the definition head to the definition branch
is severed, as is the (≺) relation providing the environment for the
definition body. This means that the body of the definition cannot
access the outer environment, and that the identifier i is no longer
reachable according to the language theory from Figure 5. Note that
we do not actually destroy the part of the program model that we just
disconnected: all facts about the definition body still exist.

To be able to reconnect location ℓb to other parts of the AST later,
we tag it as Limbo, which easily distinguishes it from locations still
connected to the AST. Limbo serves a second purpose, as we shall see
shortly.

• intro-val grafts a previously eliminated val definition branch ℓb (marked
as Limbo) onto an arbitrary val definition block whose head is ℓh. Note
the use of ValHead(ℓh) to ensure that val definitions are not erroneously
added to fun definition blocks.

Together, elim-def and intro-val allow transforming e.g.
l e t va l a = 1
i n l e t va l b = 2

i n a + b
end end

into
l e t va l a = 1

and b = 2
i n l e t in a + b
end end

• intro-fun is analogous to intro-val, except for fun definitions.

• intro-val-hd introduces a new val definition head between two Head
locations (value or function definition heads). Recall that intro-val
only allowed us to graft a definition branch onto an existing head; this
is insufficient for moving a definition head. Taking our example from
intro-val, we need to combine elim-def, intro-val and intro-val-hd to
transform the program into

l e t va l a = 1
va l b = 2

26

rename(i, n) =
i

n
7→ n

i
n
7→ n′

elim-def(i, ℓb) =
Def(i, ℓb) ℓh ⊳ ℓb ℓh ≺ ℓb

Def(i, ℓb) Limbo(ℓb)

intro-val(ℓb, ℓh) =

Val(ℓb) Limbo(ℓb)
ValHead(ℓh) ℓs ≺ ℓh

Val(ℓb) ℓd ⊳ ℓb ℓs ≺ ℓd

ValHead(ℓh) ℓs ≺ ℓb

intro-fun(ℓb, ℓh) =
Fun(ℓb) Limbo(ℓb) FunHead(ℓh)

Fun(ℓb) FunHead(ℓh) ℓh ⊳ ℓb ℓh ≺ ℓb

intro-val-hd(ℓ↑) =
Head(ℓ↑) Head(ℓ↓) ℓ↑ ≺ ℓ↓

Head(ℓ′) ℓ↑ ≺ ℓ′ Head(ℓ↑)
ValHead(ℓ′) ℓ′ ≺ ℓ↓ Head(ℓ↓)

intro-fun-hd(ℓ↑) =
Head(ℓ↑) Head(ℓ↓) ℓ↑ ≺ ℓ↓

Head(ℓ′) ℓ↑ ≺ ℓ′ Head(ℓ↑)
FunHead(ℓ′) ℓ′ ≺ ℓ↓ Head(ℓ↓)

Figure 6: Transformations for Small ML

i n l e t in a + b
end end

where the definition of b now has its own (fresh) definition head. intro-
val-hd lists an unbound variable ℓ′ in its list of created facts: our
Datalog system interprets such variables as fresh objects. This ℓ′ is
now precisely our new definition head.

• intro-fun-hd is the analogue of intro-val, exception for function defini-
tion heads.

The above definitions may lead to spurious error messages when def-
initions are deleted. As an example, consider the deletion of an unused
definition val a = b. Since a is unused, its absence will not cause any incon-
sistencies. However, looking at our inconsistency inference rules, we notice

27

that the use of b will cause a VarNonReach inconsistency: the use of the
identifier of b remains part of the program model, even though we have pre-
sumably disconnected the concrete occurrence of b from the program. This
runs contrary to intuition (and to our practical needs) which suggest that
locations in limbo should not cause inconsistencies.

We address this problem by suppressing errors that arise in locations
that are “in limbo” (as shown in Figure 5); the language theory rules for
InLimbo are simply

Limbo(ℓ)

InLimbo(ℓ)

Limbo(ℓ′) ℓ′ ≪ ℓ

InLimbo(ℓ)

Thus, any location that has an ancestor in limbo is also considered in limbo,
and name captures and unreachable identifier uses for such locations are
suppressed.

5.2 Modelling Standard ML

In addition to the transformations we discussed for Small ML, our proto-
types include the behaviour-changing extension listed in Section 4.2.1, by
providing transformations to explicitly accept the elimination and renam-
ing of previously exported identifiers from the toplevel and from structures,
as well as a transformation to explicitly accept the introduction of a new
identifier.

Our prototypes further add type aliases, and allow substituting type
identifiers by aliases.

Our prototype implementations handle most of Standard ML; the as-
pects of SML it is missing are abstypes, signatures, functors, fixity declara-
tions, and side effects in val bindings.

5.3 Soundness

Our implementation is not (yet) sound for all of Standard ML, since some
of the transformations do not properly model side effects. To the best of
our knowledge, this is a limitation we share with all existing refactoring
systems for impure languages. We expect to add support for side effects
by introducing a conservative effect analysis into our program model and
allowing behaviour-evolving transformations (Section 4.2.1) to allow users
to override the conservative results from this analysis.

28

6 Evaluation of our Prototype

We evaluated our prototype implementations in two ways: first, by compar-
ing the transformations they support to those listed in a standard catalogue
of refactorings (Section 6.1), and secondly by experimenting with the plan-
ner, to generate recovery plans (Section 6.2). The first evaluation is identical
for both prototypes. The second varies considerably; we only report num-
bers for our ad-hoc implementation, since the runtime performance of our
Datalog prototype renders it impractical.

6.1 Supported refactorings

Presently, Thompson and Reinke’s Catalogue of Functional Refactorings [17]
is the only such catalogue for functional languages. Thompson and Reinke
list 22 refactorings, all of which have duals. However, the first refactoring,
Renaming, is identical to its dual; thus, they list a total of 43 refactorings.
Of these, six are not applicable to SML (Refactoring #11 due to the lack of
rank-2 polymorphism, Refactoring #14 due to the lack of a set comprehen-
sion mechanisms, and #18 due to the lack of syntactic sugar for Monads).
We implemented the transformations listed in Figure 6, transformations for
new type aliases and substituting type identifiers by aliased type identi-
fiers, and transformations to accept externally visible change. With these
transformations, we found that our system subsumed the following seven
refactorings from Thompson and Reinke’s catalogue:

• Renaming (#1) is covered by the rename transformation.

• Lifting and Demoting (both #2) break down into elim-def and intro-
val or intro-fun transformations, optionally including intro-val-hd and
intro-fun-hd.

• Naming a Type (#3 and dual), which adds/removes a type defini-
tion and replaces type name occurrences by occurrences of definition-
ally equivalent type names. Our system provides two transformations
add-type-alias and substitute-alias transformations which subsume this
refactoring.

• Migrate Functionality (#10 and dual), which (in SML) moves defini-
tions into or out of structures, is similar to Lifting or Demoting, except
that the target locations are in opened structures.

29

Program Init (best) Inconsistency (best)

sample 42µs 22µs

life 182µs 59µs

ray 571µs 112µs

Figure 7: Performance of program metamorphosis. “Init” refers to the time
needed to abstract the desired program model from ground facts. “Inconsis-
tency” is worst-case (whole-program) inconsistency inference. “Update” is
the average time needed to recompute inconsistencies after a transformation.

6.2 Initial Results

We evaluated our implementation by applying it to three programs, the four-
line sample program we used as an example in Section 3, and two programs
from the MLton1 benchmark suite: “life”, a game of life implementation
(157 loc), and “ray”, a ray tracer (459 loc). We did not run on larger
programs due to an unresolved implementation bug in our frontend that
yielded incomplete initial program models. For our tests, we resolved this
limitation by manually adding the missing information.

Figure 7 summarises our results. We ran our implementation (compiled
by the MLton whole-program optimising compiler, revision 20070826), on a
2.16 GHz Core2Duo machine. For our performance results, we reported the
best number out of 100 runs.

As we see, the time for initialising the desired program model and for
inferring inconsistencies is insignificant for the programs we considered and
appears to scale roughly linearly with program size. We therefore expect
program metamorphosis to be practical even for very large programs.

6.3 Experiences with Recovery Plan Search

In our experiments, we found the inconsistencies reported by our system to
be easy to trace, allowing us to quickly restore programs to validity. For
larger programs and for novice users, automatic support might be helpful.
Since program metamorphosis gives rise to a notion of automatic recovery
planning, i.e., searching for sequences of transformations that restore pro-
grams to validity, we added such search facilities to our prototypes.

We implemented two planners: one “intelligent” planner with search
heuristics, for our Datalog system, and one “dumb” planner, performing

1http://mlton.org

30

greedy search, for our ad-hoc system. While both systems are currently not
sufficiently efficient for practical use, they report promising results: for our
earlier example (Section 3), they find numerous useful plans, including

• Undo the renaming of “num” to “result”

• Rename the original “result” to a fresh name

• Relocate the definition of the former “num” (now “result”) into the
same val definition as “x” (so that the body of the definition of “x”
cannot see this definition)

• Relocate the definition of “x” into the block in which the former “num”
is defined, for the same effect.

Our Datalog planner suffers mostly from slow inconsistency inference.
Our ad-hoc planner eliminates this problem, but does not effectively prune
the search space. We expect that combining the efficient search space prun-
ing of our Datalog system with the fast evaluation times of our ad-hoc plan-
ner will yield a planner that is practical at least for small and medium-sized
programs.

7 Discussion

We have presented program metamorphosis as an alternative to traditional
machine-supported refactoring. In the following, we compare our approach
and traditional refactoring in several additional respects: the user inter-
face (Section 7.1), scalability, (Section 7.2), and language specificity (Sec-
tion 7.3).

7.1 User interface

Since program metamorphosis normally operates on an abstracted represen-
tation of the program under metamorphosis, it must not allow free-form
editing while metamorphosis is in progress. Thus, editors with program
metamorphosis support must be bimodal; for example, our prototype im-
plementation utilises two different EMACS major modes to achieve this ef-
fect. Users first switch into “program metamorphosis mode” before applying
transformations, and switch back once they are done. During metamorpho-
sis, the editor must visualise inconsistencies.

Traditional refactoring does not require modality. However, practical
refactoring tools (such as used in Eclipse) often already include a preview

31

mechanism and other complex UI elements, many of which can be avoided
since program metamorphosis requires no previewing and can employ more
fine-grained transformations.

7.2 Scalability

Program metamorphosis requires both a current and a desired program
model. Thus, program metamorphosis must, in theory, represent up to
twice as much data as a traditional refactoring system.

While we cannot rule out the existence of practical cases in which pro-
gram metamorphosis indeed suffers from this overhead, our experiences in-
dicate that this discrepancy is often less severe:

• Oftentimes, the desired program model needs only an abstraction of
the full program model. For example, in our prototype the desired
program model only consists of the set of currently used identifiers, at
each program location, and the set of exported identifiers plus expected
names, at each module definition and at the toplevel.

• Existing refactoring systems often also represent such abstractions, to
facilitate operations not related to refactorings (such as jumping to
the definition of a selected identifier).

• Computing the precondition of a refactoring necessarily includes over-
head of its own. In general, preconditions may need to simulate a full
program transformation: then, their overhead is no less than ours.

7.3 Language Specificity

Refactoring has been applied to object-oriented [15], functional [9], and logic
programming languages [14]. By contrast, we have only discussed program
metamorphosis in Standard ML. To illustrate that our approach is not spe-
cific to any particular language paradigm, we have also begun implementing
a program metamorphosis system for Java, using an ad-hoc implementation
approach (Section 4.3) and exploiting the RECODER library2. This system
is not yet complete, but our current observations indicate that at least struc-
tural and nominal transformations in Java are no harder than in functional
languages; for example, inherited properties in Java behave very similarly
to opened structures in SML.

2http://recoder.sourceforge.net

32

8 Related Work

There is a large body of related work on refactoring (cf. [11] for a survey),
including many implementations, such as HaRe [9] and Eclipse [15]. The
observation that more information than immediately visible to the eye is
needed to perform correct transformations was already employed by Gris-
wold [7], who used Program Dependence Graphs [5] for this purpose. These
systems consider refactorings to be individual macroscopic transformations.
Some other program transformation approaches [2, 19] look specifically for
atomic transformations, but remain entirely semantics-preserving.

Composing transformations to achieve a certain goal is the central theme
of AI Planning (cf. [13] for a high-level overview). The composition of refac-
torings in particular has also been considered [8], but only for traditional
approaches to refactoring, without allowing intermediate invalidation of cor-
rectness properties.

9 Conclusion

We have presented a novel approach to program refactoring that defers cor-
rectness checks until after a transformation sequence of arbitrary length.
Our approach permits such sequences to be constructed interactively, max-
imising user control. Simultaneously, our approach permits judicious be-
haviour evolution. Since the scope of our approach is greater than that of
refactoring, we distinguish it from the latter by referring to ours as program
metamorphosis.

We refined program metamorphosis it into stateful program metamor-
phosis, which retains prior program state to speed up correctness checks.
Our experimental results suggest that stateful program metamorphosis is
practical, can be implemented efficiently, and constitutes a viable extension
over traditional refactoring.

Acknowledgements

The authors are indebted to Daniel von Dincklage, Devin Coughlin, William
Griswold, Jeremy Siek, Philipp Wetzler, and the anonymous POPL and
ICFP referees for their valuable feedback on this work.

33

References

[1] Andrew W. Appel and David B. MacQueen. A Standard ML Compiler. In
Proc. of the Conf. on Functional Prog. Lang. and Comp. Arch., volume 274,
pages 301–324, Portland, OR, 1987. Springer, Berlin.

[2] Jacques J. Arsac. Syntactic source to source transforms and program manip-
ulation. Commun. ACM, 22(1):43–54, 1979.

[3] Kent Beck. eXtreme Programming eXplained, Embrace Change. Addison Wes-
ley, 2000.

[4] Dominique Clément, Thierry Despeyroux, Gilles Kahn, and Joëlle Despeyroux.
A simple applicative language: mini-ML. In Proc. of the 1986 ACM conf. on
LISP and Functional Prog., New York, NY.

[5] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. Program. Lang. Syst.,
9(3):319–349, 1987.

[6] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[7] W. G. Griswold and D. Notkin. Program Restructuring as an Aid to Software
Maintenance. Technical report, Univ. of Wash., 1990.

[8] Günter Kniesel and Helge Koch. Static composition of refactorings. Sci. Com-
put. Program., 52(1-3):9–51, 2004.

[9] Huiqing Li, Claus Reinke, and Simon Thompson. Tool Support for Refactoring
Functional Programs. In J. Jeuring, editor, ACM Sigplan Haskell Workshop,
pages 27–38, 2003.

[10] Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising Behaviour Pre-
serving Program Transformations. In ICGT ’02: Proceedings of the First
International Conference on Graph Transformation, pages 286–301, London,
UK, 2002. Springer-Verlag.

[11] Tom Mens and Tom Tourwe. A survey of software refactoring. IEEE Trans.
Softw. Eng., 30(2):126–139, 2004.

[12] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Defi-
nition of Standard ML – Revised. MIT Press, Cambridge, MA.

[13] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 2nd edition, 2003.

[14] T. Schrijvers, A. Serebrenik, and B. Demoen. Refactoring prolog programs,
2001.

34

[15] Sherry Shavor, Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellerman,
and Pat McCarthy. The Java Developers Guide to Eclipse. Addison-Wesley,
May 2003.

[16] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. J. ACM, 32(3):652–686, 1985.

[17] Simon Thompson and Claus Reinke. A Catalogue of Functional Refactorings,
Version 1, 2001.

[18] J. D. Ullman. Bottom-up beats top-down for datalog. In Proc. of the 8th ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
pages 140–149, New York, NY, 1989. ACM Press.

[19] Martin P. Ward and Hussein Zedan. MetaWSL and Meta-Transformations in
the FermaT Transformation System. In COMPSAC (1), pages 233–238, 2005.

[20] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using
Datalog and binary decision diagrams for program analysis. In Kwangkeun
Yi, editor, Proc. of the 3rd Asian Symp. on Prog. Lang. and Systems, volume
3780. Springer-Verlag, November 2005.

35

