Developing and Debugging Algebraic Specifications
for Java Classes
University of Colorado Technical Report CU-CS-984-04*

Johannes Henkel and Christoph Reichenbach and Amer Diwan
Department of Computer Science, University of Colorado at Boulder

December 12, 2004

Abstract

Modern programs make extensive use of reusable software libraries. For
example, a study of a number of large Java applications shows that between
17% and 30% of the classes in those applications use container classes defined
in the java.util package. Given this extensive code reuse in Java programs,
it is important for the interfaces of reusable classes to be well documented.
An interface is well documented if it satisfies the following requirements: (1)
the documentation completely describes how to use the interface; (2) the
documentation is clear; (3) the documentation is unambiguous; and (4) any
deviation between the documentation and the code is machine detectable.
Unfortunately, documentation in natural language, which is the norm, does
not satisfy the above requirements. Formal specifications can satisfy them
but they are difficult to develop, requiring significant effort on the part of
programmers.

To address the practical difficulties with formal specifications, we describe
and evaluate a tool to help programmers write and debug algebraic specifica-
tions. Given an algebraic specification of a class, our interpreter generates a
prototype which can be used within an application just like any regular Java
class. When running an application that uses the prototype, the interpreter
prints error messages that tell the developer in which way the specification
is incomplete or inconsistent with a hand-coded implementation of the class.
We use case studies to demonstrate the usefulness of our system.

1 Introduction

Modern software is made up of many components. For example, Table 1 shows
the number of classes (# classes) and the number of modules (# jar files) for a

* Author’s address: Department of Computer Science, University of Colorado at Boulder, Boul-
der, Colorado 80309-0430, USA. This work is supported by NSF grants CCR-0085792, CCR-
0133457, and CCR-0086255. Any opinions, findings and conclusions or recommendations ex-
pressed in this material are the authors’ and do not necessarily reflect those of the sponsors.

Table 1: Modularity in large Java projects.
jar files # classes

Jedit 4.1 3 644
Xalan J 2.5.2 9 2,395
Jakarta Velocity 1.1bl 21 2,610
Apache Tomcat 5.0.19 51 3,959
Eclipse 3.0-M7 147 21,774
JBoss 4.0.0DR2 214 32,820

representative selection of Java-based open source projects. To enable programmers
to modify these systems and to fully understand the impact of their modifications,
it is necessary for the interfaces! to be well documented. By “well documented” we
mean that each interface’s documentation fully describes how to use the interface,
and the documentation is unambiguous, clear, and correct (i.e., correctly describes
the implementations of the interface).

These criteria for “well documented” are hard to meet with informal documen-
tation. Informal documentation does not, in particular, allow us to automatically
check that the documentation is clear, unambiguous, and in sync with the im-
plementation. In practice, it takes significant and persistent effort on the part of
programmers to write and maintain good documentation, especially for evolving
systems.

Formal specifications, on the other hand, are unambiguous and clear. For some
kinds of formal specifications it may also be possible to check that an implemen-
tations adheres to a specification. Despite the advantages of formal specifications,
programmers rarely use them for the following reasons:

1. Programmers are reluctant to learn new languages, especially if there is no
immediate gratification for doing so. With current technology, investing into
formal specifications pays off late in the development cycle.

2. It is difficult to write a correct formal specification.

3. Maintaining a mapping between the formal specification and an evolving im-
plementation is difficult, especially if concepts expressed in the specification
language do not directly correspond to concepts expressed in the implemen-
tation language (a typical example for this are side effects).

We describe and evaluate a novel approach that is a step toward addressing the
above difficulties with formal specifications. For our implementation and analyses,
we chose Java as underlying language, due to its popularity and the presence of
an extensive standard library, but also because of its support for reflection and
user-defined class loaders (Section 4). Since container classes Java programs heavily

1By “interfaces”, we mean the abstract notion of “interfaces” which includes but is not limited
to interface types in Java.

Table 2: Container class usage in large Java projects.
classes # classes using containers from java.util

Jedit 4.1 644 123 (19.1%)
Xalan J 2.5.2 2,395 398 (16.6%)
Jakarta Velocity 1.1bl 2,610 780 (29.9%)
Apache Tomecat 5.0.19 3,959 1,084 (27.4%)
Eclipse 3.0-M7 21,774 4,757 (21.8%)
JBoss 4.0.0DR2 32,820 7,888 (24.0%)

reuse container classes (Table 2), we focus on documenting these. More specifically,
we use a particular style of formal specifications, algebraic specifications, which are
especially well suited for describing container classes [GHT78].

Our approach has two components. First, our specification language is a nota-
tion for writing algebraic specifications that is tailored to modeling Java classes.
Programmers can document their classes and methods using this language. Com-
pared to previous work, our language simplifies mappings between Java classes and
methods and algebraic sorts and operations.

Second, the specification interpreter takes an algebraic specification for a class
and a client for the same class, and executes this client using interpretation to
simulate the behavior of the specified class. Thus, given an algebraic specifica-
tion, the system automatically provides an implementation for the specified class,
providing instant gratification for programmers. The interpreter can also help in de-
bugging specifications and testing specifications and class implementations against
each other. Our tool interprets algebraic specifications using term rewriting, which
is a well studied area [DP01, TeR03]. However, to our knowledge our system is
the first to seamlessly integrate fully automatic algebraic rewriting techniques with
Java classes.

We describe four scenarios in which our tool can help developers in producing
documentation in a formal specification language. We demonstrate that our ap-
proach works by applying it to a number of case studies. We also report on the run
time performance of the interpreter.

This paper improves and extends upon the presentation, ideas, and experimental
results presented in our previous work [HDO04b].

Section 2 describes four usage scenarios for our system. Section 3 describes our
specification language. Section 4 describes our Java-embedded algebraic specifi-
cation interpreter. Section 5 provides a performance evaluation and case studies.
Section 6 discusses related work and Section 7 concludes.

2 Usage Scenarios

We now describe four ways of using our system.
Figure 1 describes the extreme specifying scenario, which is inspired by ex-
treme programming. In this scenario, the developer evolves specification and

Prototype

Specification
e.g., LinkedList.spec

Test Driver
e.g., LinkedListTestDriver.java

Implementation
e.g. LinkedList.java

uses

Prototype

Specification
e.g., LinkedList.spec

[Speciﬁcation Interpreter]

Client Application
e.g., LinkedListClient.java

Figure 2: Rapid prototyping.

Prototype

Specification
e.g., LinkedList.spec

[Specification Interpreter]

)

uses

[e.g., LinkedListClient.java

Figure 3: Validating an Implementation.

|

Implementation
e.g. LinkedList.java

Prototype

Specification
e.g., LinkedList.spec

\ e [Speciﬁcation Interpreter]
\ Vi
Algebraic Specification s
Discovery Tool |
Client

e.g., LinkedListClient.java

Figure 4: Discovering and Debugging Specifications.

test drivers hand in hand. To construct a complete specification and a com-
plete unit test, the developer repeats these steps: (i) Extend the test driver
(LinkedListTestDriver. java, in the example); (ii) run the test driver; (iii) if
the interpreter fails during the run, use its output to identify and fix inaccuracies
and omissions in the specification (e.g., LinkedList.spec).

In the extreme specifying scenario, our approach can make developing specifi-
cations easier since our system provides support both for incrementally developing
specifications and for testing incomplete specifications.

Figure 2 describes the rapid prototyping scenario, which looks similar to
Figure 1. For this scenario, however, we assume that the specification
(LinkedList.spec) is complete. A client (LinkedListClient. java) can then use
the specification just like any regular Java class, except that the performance will
usually be inferior to a Java implementation. This means that client code can be
tested earlier in the development process.

In the rapid prototyping scenario, our approach can give programmers instant
gratification when they write specifications: Once written, a specification also pro-
vides a prototype that can be used to aid in the development of other modules.

Figure 3 describes the validation scenario, in which the specification interpreter
validates an implementation within a particular context. Without changing the
source code of the client (LinkedListClient.java), the interpreter can execute
an algebraic specification (LinkedList.spec) and an existing implementation for
a class (LinkedList. java) at the same time. The interpreter can then report any
discrepancy in the behavior between implementation and specification.

In the validation scenario, one can use our approach to keep a specification and
an implementation in sync.

Figure 4 describes how we combine our interpreter with our work on discovering
specifications to discover and debug algebraic specifications for existing implemen-
tations. Our dynamic specification discovery tool [HDO03] generates a potentially
unsound and incomplete specification by observing the behavior of objects. The
specification can then be debugged with the algebraic interpreter.

In this scenario, our approach helps in developing specifications for a class that
already exists: The discovery tool finds an incomplete specification (which is a good
starting point) and the interpreter helps the programmer to refine the discovered
specification.

3 An Algebraic Specification Language
We designed our language with the following goals:
e The specification language should be as close as possible to the the Java
programming language, without giving up the advantages of algebraic speci-

fications. More specifically, (i) it should be straightforward (automatic, where
possible) to map Java signatures and sorts to algebraic signatures and types

and (ii) the axioms should use a Java-like syntax whenever possible. Previous
languages and tools require user defined mappings between specifications and
implementations (e.g., [HS96]).

e Mappings from Java classes to algebras should represent methods with both
side effects and return values. This extends upon previous work, which gen-
erally assumes that a method invocation either has no side effects or yields
no return value.

3.1 Scope of the Algebraic Specification Language

Invoking a Java method has seven possible consequences: The method may

(i) return a value,
throw an exception,
modify the receiver (“this”)?,

modify objects passed as arguments?

)
)
)

(v) modify objects pointed to by static variables?,
) modify resources external to the program, or
)

terminate the program.

Our language models (i)-(iv). Since it is an algebraic language, it models the
observable state of objects, which abstracts away from the implementation of ob-
jects. Our language does not model shared state ((v) and (vi)), since this is too
cumbersome to express with algebraic specifications. Expressing (vii) is trivial. To
our knowledge, no solution exists for modeling (v) and (vi) algebraically without
significantly increasing the complexity of the language or the specifications.

3.2 Definition of the Algebraic Specification Language

Algebraic specifications have two parts: an algebraic signature (e.g., lines 2-6 in
Figure 6) and a set of azioms [Mit96] (e.g., lines 8-11 in Figure 6). The algebraic
signature itself has two parts: sorts (e.g., lines 2-3 in Figure 6) and operations and
their signatures (e.g., lines 4-6 in Figure 6). Intuitively, sorts give the types of
interest to the algebra. Operations are used to construct the terms of the algebra.
The axioms equate terms in the algebra (e.g., lines 8-11 in Figure 6). We now
describe the parts of specifications written in our language in more detail.

3.2.1 Specification Name

The developer starts a specification with the specification keyword, followed by
a name for the specification. This name is for documentation purposes only. For
example, the specification shown in Figure 6 has the name “ObjectStackSpecifica-
tion” (line 1, Figure 6).

2This includes objects reachable via indirection.

1

11

12

14

15

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

package edu.colorado.cs.simpleadts;
public class ObjectStack {

private Object [] store;
private int size;
private static final int INITIAL_CAPACITY=10;

public ObjectStack(){
this.store = new Object [INITIAL_CAPACITY];
this.size=0;

}

public void push(Object element){
if (this.size == this.store.length){

Object [] store = new Object[this.store.length*2];
System.arraycopy (this.store,0,store,0,this.size);

this.store = store;

}

this.store[this.size++]=element;

}

public Object pop(){
Object result = this.store[this.size];
this.store[this.size]=null;
this.size—-;
if (this.store.length > INITIAL_CAPACITY

&& this.size*2.7 < this.store.length){

Object [] store = new Object[this.store.length/2];
System.arraycopy (this.store,0,store,0,this.size);

this.store = store;
¥

return result;

Figure 5: An object stack class implemented in Java.

specification ObjectStackSpecification

class ObjectStack is edu.colorado.cs.ObjectStack
class Object is java.lang.0Object

method NewObjectStack is <void <init>()>

method push is <void push(java.lang.Object)>
method pop is <javal.lang.Object pop()>

define ObjectStack

Spec. name

| sorts

| operations

d simulation set

forall s:0bjectStack forall o:0Object (Axiom 1)
pop(push(s, o).state).retval == o
forall s:0bjectStack forall o:0Object (Axiom 2)
pop(push(s, o).state).state == s | algebraic azioms
7

Figure 6: Example Specification for an ObjectStack class (see Fig. 5).

3.2.2 Sorts

Sorts are the algebraic equivalents to Java types. A 1-1 mapping exists between
sorts and the Java types of the same name: For each type in Java, there is exactly
one sort and vice versa. Thus, sorts belong to packages, just like Java types do. The
first major section of the specification file defines shortcuts for them. For example,
lines 2-3 in Figure 6 define shortcuts for the Object and ObjectStack sorts; these
shortcuts are used in the remainder of the specification.

3.2.3 Operations

This part of the specification file enumerates the operations and their signatures
(e.g., lines 4-6 in Fig. 6). Line 4 in Fig. 6 declares the NewObjectStack operation,
which corresponds to the constructor for the ObjectStack class (Fig. 5, lines 9-
12)3. Line 5 in Fig. 6 declares the push operation, which corresponds to the Java
method push in Fig. 5, lines 14-21. We borrow the Soot syntax for fully qualified
names of Java methods [VRGH™T00].

Even though we use Java-like syntax to define the operation signatures, the
actual resulting signatures differ from the corresponding Java method signatures:
since algebraic specifications do not support implicit parameters or side-effects, we
need to include the otherwise implicit “this” argument and all potential side-effects
in the return value. In our language, all operations return a tuple consisting of all
directly accessible values that could potentially be modified or generated by a Java
method: receiver, return value, and all arguments. Our language does not model
state accessible through other means (such as global variables). We also assume
that programmers do not use public fields and fields with package visibility and
instead use public getters and setters.

More precisely, given a Java method named m defined in a class represented by
sort cls with n arguments argy, ..., arg,, of sorts sort(arg,),...,sort(arg,), with
the return type represented by sort ret, we construct the signature of an algebraic
operation m within an algebra cls as follows:

m : cls x sort(arg;) X ... X sort(arg,,) (1)
— cls x ret X sort(argy) X ... x sort(arg,,)

The receiver argument (of sort cls) to the left of the arrow characterizes the original
state passed into m. The receiver type to the right of the arrow represents the
possibly modified state of the receiver as a result of evaluating the operation. The
right hand side of the arrow also includes the return value (of sort re¢, which can
be the sort corresponding to void), and the potentially modified arguments (of
sorts sort(arg;)). For simplicity, this includes arguments passed by value (Java’s
primitive types), even though it is guaranteed that those remain unchanged. In
case the operation corresponds to a Java constructor, the receiver argument to the

3In this section, constructor always refers to the constructor of a Java class. This is different
from the notion of an algebraic constructor, which is the only kind of operation allowed to occur
in a normal form.

left of the arrow is void. Note that even though potentially modified arguments
can be modeled in our language our interpreter does not currently support them.
The algebraic signature for push (line 5, Fig. 6) is:

push : ObjectStack x Object — (2)
ObjectStack x void x Object

The push operation takes an ObjectStack (the receiver in Java) and an Object
(the parameter in Java). It computes a new ObjectStack, has no return value, and
computes a potentially modified Object instance for the argument. Similarly, the
algebraic signature for pop (line 6, Fig. 6) is:

pop : ObjectStack — (3)
ObjectStack x Object

Notice how the algebraic signature can be derived automatically from the Java
signature.

Hidden Operations The language supports hidden operations, which are alge-
braic operations that do not correspond to Java operations. We sometimes need
such operations to specify the semantics of other operations [TWW82] (see Section
5.3.1 for examples). The hidden annotation on an operation indicates that the
operation is hidden, for example:

hidden method size is
<edu.colorado.cs.simpleadts.0ObjectStack: int size()>

Having defined the hidden operation size this way, we could now use it within
the algebraic specification, even though there is no corresponding Java method in
Fig. 5.

External Operations FExternal operations are ones for which we do not have or
cannot express an algebraic specification but for which we would like to provide a
nontrivial semantics; Section 4.5.4 gives an example. The external annotation on a
operation signature indicates that the operation is external.

3.2.4 Simulation Set

The simulation set is a set of classes whose behavior the algebraic interpreter (Sec-
tion 4) simulates by interpreting their specification (Section 4.1 has the details).

3.2.5 Algebraic Axioms

The algebraic axioms (which are equational axioms) give the specification needed
to define the behavior of the operations belonging to classes in the simulation set.
For example, consider lines 8-11 of Fig. 6. The .retval and .state qualifications
select elements from the result tuple. .state retrieves the first element, which is
the possibly modified receiver object (this). .retval retrieves the second element,

which is the method’s return value. .argl, .arg2, etc. retrieve the potentially
modified arguments. Both axioms are universally quantified over all object stacks
and all objects. Axiom 1 (Figure 6) states that invoking pop after a push returns the
object that was last pushed. Axiom 2 states that invoking pop on an ObjectStack
right after invoking push reverts the stack back into its prior, pre-push state.

Our language also supports conditional axioms, such as:

axiom forall 1l:LinkedList forall x:Object forall i:int (Axiom 3)
if i>=0 then get(addFirst(l, x).state, intAdd(i, 1).retval).retval
== get(l,i) .retval

This axiom defines the semantics of the get operation in terms of addFirst. get
returns the ith element in the linked list. The basic idea is to traverse down the
list while decrementing ¢ as long as ¢ > 0. intAdd performs integer addition.

We also support the more complex join systems [TeR03]. A join system allows
conditional axioms with arbitrary terms in their condition.

4 An Algebraic Specification Interpreter

Given an algebraic specification for a class and a client for the same class, the
client can be executed while the algebraic specification interpreter is performing
interpretation to simulate the behavior of the specified class. In this way, the
system automatically provides an implementation for existing specifications. Our
tool interprets algebraic specifications using term rewriting, which is a well studied
area [DP01, TeR03]. However, to our knowledge our system is the first to seamlessly
integrate fully automatic algebraic rewriting techniques with Java classes.

The interpreter provides three main benefits. First, it gives programmers more
for their effort: They not only get the benefit of a formal specification as documen-
tation, but also a prototype of their class, ready for immediate use. We expect this
feature to be particularly useful in multi-programmer projects since it allows devel-
opers of some components to test against specifications of other components before
those are even implemented. Second, by providing a feature for experimentally val-
idating specifications against implementations, our tool helps prevent divergence of
implementation and its specification as the software system evolves. Third, our sys-
tem is invaluable for debugging algebraic specifications (either hand crafted or one
discovered by a discovery tool [HD03]) since it allows a specification to be “run”
and its behavior to be observed. When running a specification, there are three
possible outcomes: (i) The run produces correct answers, which suggests that the
specification may be sound and complete in general; (ii) the run produces incorrect
answers which indicates a bug in the specification; or (iii) the run fails because the
interpreter is unable to produce an answer for a method, which indicates that the
specification may be incomplete.

We now describe implementation and algorithmic details of the interpreter.

10

Java Application

Java '!!m S S
ey N Py
classes) AN) -
— 1 class D |
simulation simulation
client subjects

Specification Components

[algebraic specifications]

[simulation set = {D, E}]

oz

runtime

Custom
Class
Loader

.

_

Interpreter
simulation simulation
stub algebraic | subject
instance term instance

L

Running Java Application

elase O]

3 class SIMSTUB_D E

simulation
stubs

simulation
client

J

Figure 7: Architecture of our system

11

4.1 Inputs to the Interpreter

Figure 7 illustrates the architecture of our system. From the user supplied parts
we see that the user provides two kinds of inputs to our system: Specification
Components, which are the algebraic specification parts of the input, and Java
Application, which is the Java part of the input. The Algebraic Specifications are
specifications in the language described in Section 3.

The algebraic specifications also give the simulation set (Section 3.2.4). This
simulation set indicates the classes designated for interpretation (e.g., line 7 in
Figure 6). define clauses define the scope of the specification, i.e. the classes
that are being characterized by the specification. Note that this is usually a subset
of the sorts (e.g., Figure 6 mentions Object and ObjectStack, but defines only
ObjectStack).

The simulation client is a Java application that uses the classes in the simulation
set. Optionally, users may also provide simulation subjects which are real existing
implementations of the classes to be simulated. If a user provides these classes, our
interpreter continuously checks the result generated by invocations on instances of
these classes against interpretation results (i.e., it runs them in parallel). Thus,
this optional component provides a mechanism for dynamically validating a real
implementation against an algebraic specification. Furthermore, when algebraic
interpretation fails due to an incomplete specification, the interpreter can issue
warnings and continue executing by using results from the simulation subjects.

4.2 Integration with Java

We use a custom Java class loader to load the simulation client. This class loader
uses the bytecode engineering library [Apa03] to redirect references to classes be-
longing to the simulation set to corresponding simulation stubs. These simulation
stubs contain methods with the same signatures as the classes they simulate, though
their bodies delegate all calls to the interpreter. We generate simulation stubs on
the fly. For example, consider the following code fragment:

LinkedList 11 = new LinkedList();
LinkedList 12 = new LinkedList();
Integer five = new Integer(5);
12.add(five); 11.addA11(12);

Since LinkedList is a member of the simulation set, the class loader replaces all ref-
erences to LinkedList with references to the simulation stub SIMSTUB_LinkedList
by manipulating the constant pool of the Java bytecode for the class.

SIMSTUB_LinkedList 11 = new SIMSTUB_LinkedList();
SIMSTUB_LinkedList 12 = new SIMSTUB_LinkedList();
Integer five = new Integer(5);

12.add(five); 11.addAl1(12);

12

4.3 Generating Simulation Stubs

We generate the simulation stub, SIMSTUB_LinkedList, automatically when we
encounter the first reference to LinkedList. The following is an example of the add
method in the simulation stub for LinkedList. This stub wraps all arguments into
an object array and passes a serialized signature, the arguments, and the receiver
object to the interpreter. Finally, it unboxes the result of the interpretation into a
boolean.

public boolean add(Object o){
return UnboxUtil.unboxBoolean(
Interpreter.interpret("<LinkedList: boolean add(Object)>",
new Object[]{o},this)); }

4.4 Modeling Object State with Algebraic Terms

For each simulation stub instance (e.g., an object of type SIMSTUB_LinkedList),
the interpreter maintains an algebraic term modeling the state of the object and,
optionally, a simulation subject instance (e.g., an object of type LinkedList) (see
the Interpreter box in Figure 7). When the simulation client invokes a method
on a simulation stub instance, the interpreter extends (and possibly rewrites) the
algebraic term associated with that instance accordingly. If simulation subjects are
provided, the interpreter also invokes the corresponding method on the simulation
subject instance. After executing the code in Section 4.3 , 11 refers to the following
algebraic term:

addAll(NewLinkedList() .state, (Term 1)
add(NewLinkedList() .state, Integer@3982).state).state

The subterm Integer@3982 denotes the Integer object containing the integer value
5. By applying term rewriting (discussed in detail in Section 4.5), the interpreter
(i) reduces the size of the terms that model the state of an object and (ii) computes
the return value of the simulated Java methods. To illustrate this, assume that we
have a given set of axioms to interpret with. As an example for (i), assume that
the interpreter uses an axiom

forall o:0bject add(NewLinkedList().state, o).state (Axiom 4)
== addFirst(LinkedList() .state, o) .state

to transform the algebraic term Term 1 into

addAll(NewLinkedList() .state, addFirst((Term 2)
NewLinkedList() .state, Integer@3982).state).state

Next, the axiom

forall 11:LinkedList forall 12:LinkedList (Axiom 5)
addA11(11, addFirst(1l2, o) .state).state
== addAll(add(1l1, o).state, 12).state

13

transforms Term 2 into

addAll (add(NewLinkedList() .state, (Term 3)
Integer@3982) .state, NewLinkedList().state).state

Next, the axiom

forall 1l:LinkedList addAl1(1l, NewLinkedList() .state).state == 1
transforms Term 3 into
add(NewLinkedList() .state, Integer@3982).state (Term 4)
As an example for (ii), the interpreter rewrites the term
addAll(NewLinkedList() .state, (Term 5)
add(NewLinkedList() .state, Integer@3982).retval

using the axiom
forall 11:LinkedList forall 12:LinkedList forall o:0bject

addAl11(11, add(1l2, o).state).retval == true (Axiom 6)

into true. Since true is a constant, the interpreter can return the constant back
to the interpretation stub and the simulation was successful.

4.5 Algebraic Term Rewriting

Any given specification language presents a particular tradeoff between analyzabil-
ity and expressiveness. Languages that are easy to analyze are usually not as ex-
pressive or convenient for the programmer or the specifier, yet expressive languages
can quickly become too costly to analyze. Our specification language (Section 3) is
very expressive, which means that it presents a number of challenges to our inter-
preter. We start by giving a high-level overview of our use of rewriting and then
discuss individual challenges we encountered.

4.5.1 Overview of Rewriting

Recall that Java clients of our interpretation invoke operations on simulation stub
instances. These simulation stub instances take the place of regular objects (e.g.,
instances of a LinkedList) in a traditional Java program. As the client invokes
more methods on simulation stub instances, the terms modeling the state of the
objects increase in their size. The rewriting engine is responsible for reducing these
terms. Rewriting interprets the axioms in the algebraic specification as rewrit-
ing rules that transform one term into another. Each axiom in the user-provided
specification gives rise to up to two rewriting rules. For example,

forall o: Object addFirst(NewLinkedList().state, o).state
== add(NewLinkedList() .state, o) .state

14

gives rise to two potential rewriting rules, namely

forall o: Object addFirst(NewLinkedList().state, o).state
— add(NewLinkedList() .state, o).state and

forall o: Object add(NewLinkedList().state, o).state
— addFirst(NewLinkedList() .state, o).state

However, the axiom

forall 1:LinkedList forall o: Object add(l, o).retval == true

gives rise to only

forall 1:LinkedList forall o: Object add(l, o).retval — true

since we would not have a binding for 1 and o if we had a rewriting rule from true
to add(1l, o) .retval.

Given a term that needs to be reduced, our interpreter works by applying a
sequence of rewriting rules. If the reason for reducing a term is to produce an
answer to return to the client, our interpreter applies rewriting rules until it ends
up with a constant (e.g., a number of a reference to an object). If the reason for
reducing a term is to reduce its size, the interpreter can stop whenever it feels that
the term is small enough.

4.5.2 Strategies for Algebraic Term Rewriting

To manage the vast search space for term rewritings, we use two strategies.

Our primary strategy is a greedy one that uses only rewriting steps that reduce
the size of the term. It does not use backtracking. If the term to be reduced is a
.retval term, and this strategy is unable to reduce it to a constant, it continues
by applying the secondary strategy.

The secondary strategy tries to apply all rewriting steps that do not grow the
term. If any of these rewriting steps lead to a term that can be reduced in size
via a new rewriting step, we revert back to the primary strategy. Note that this
strategy uses backtracking and thus is much more expensive than the primary one.

We do not use the secondary strategy for .state terms because reducing .state
terms is a performance optimization and not strictly necessary. Thus, we use the
secondary strategy only when we absolutely need it.

Even our secondary strategy may be unable to reduce a term if it is necessary
to increase the size of the term before it can ultimately be reduced. Also, note that
our current implementation does not check the set of rewriting rules for confluence
[DPO01] or for consistency. In other words, depending on the internal ordering of
rewriting rules, (i) it may allow a term to be reduced to two distinct constants, and
(i) it may not find the desirable rewriting sequence, even though it only consists
of steps that make the term smaller.

The set of strategies that we chose affects the capabilities and the efficiency of
our system. While we believe that these strategies make sense in practice, there is
still considerable room for experimentation.

15

4.5.3 Conditional Axioms

Conditional axioms lead to additional complexity in the algebraic specification in-
terpreter. For example, consider again the following axiom:

axiom forall 1l:LinkedList forall x:0Object forall i:int (Axiom 3)
if i>=0 then get(addFirst(l, x).state,intAdd(i, 1).retval).retval
== get(l, i).retval

For this kind of algebraic axiom (or the corresponding rewriting rule from left to
right) we simply make sure that the constraints between if and then are fulfilled
whenever we unify the left side of the axiom with a term. Sets of axioms allowing
constraints of this kind, i.e. sets of simple relations between variables and constants,
are called a semi-equational systems in the literature [TeR03].

Since our language and system support join systems (Section 3.2.5) we may need
to use the rewriting system to also determine whether the condition is satisfied.
While this all seems straightforward, it can lead to infinite recursion. Furthermore,
we find that the debugging trace for a join system can become hard to digest, since
deeply nested sequences of constraints, checks, and rewriting attempts are common.
We feel that join systems, despite their increased complexity over semi-equational
systems, are worth the potential complications: they often allow for more elegant
expression of behavior than semi-equational systems do. For example, the following
axiom uses the contains operation in a constraint to say that if a hash set h already
contains an object o, the size of h will not change if o is added again. This same
axiom is much harder to write in a semi-equational system.

forall h:HashSet forall o:0bject
if contains(h, o).retval == true then
size(add(h, o).state).retval == size(h).retval

To see how this axiom can be used as a rewriting rule, consider rewriting the term

size(add(add (NewHashSet() .state, Object@1234
) .state, Object@1234) .state).retval

First, we note that without considering the condition in the axiom, the left side of
the axiom unifies with the term with the unification mapping

_ [h +— add(NewHashSet().state, Object@1234).state
M= 0 — Object@1234

However, before we can apply the rewriting, we need to determine if the condition
is true. We apply m to the condition, yielding

contains(add(NewHashSet() .state, Object@1234).state,
Object@1234) .retval == true

Using axioms for the contains operation (omitted for brevity), the algebraic
interpreter will reduce this relation by rewriting it to the tautology true == true.
Thus, the check succeeds and the original rewriting rule can now be applied, yielding
size(add(NewHashSet() .state,0bject@1234) .state) .retval.

16

4.5.4 References to External Methods

Sometimes the specification of one class may need to reference methods from classes
outside the simulation set. For example, when writing the specification for a hash
set’s add method, we would like to write:

forall h:HashSet forall ol:0bject forall o2:0bject
if equals(ol, 02).retval == true then
contains(add(h, ol).state, 02).retval == contains(h, o02).retval

However, this axiom uses the equals method of 01 which is not part of the specifica-
tion of a hash set. Similar problems arise when writing specifications for an iterator.
There are two ways of addressing this problem: (i) Including the specification of
equals in the specification for hash set, or (ii) extending the specification language
to allow calls to Java methods, such as equals. The first approach, while seemingly
more elegant than the second approach, has one disadvantage: it forces us to specify
the behavior of equals for all possible objects that could be added to a HashSet.
Generic containers in the Java language will make this approach more viable, but
even with generics, dynamic class loading can load new subclasses for which the
behavior of equals is different than any given specification. Our current prototype
supports both the first and the second solution: One can declare that an operation
is external, which means that whenever the interpreter encounters a term in which
all parameters are constants, the Java implementation for this method is evaluated.
For example, suppose that equals has been declared an external method. When
the interpreter encounters equals(Object@1423,0bject@1111) .retval it will ex-
ecute the appropriate equals implementation before resuming algebraic interpre-
tation. This mechanism is also useful for extending the interpreter with arithmetic
and helper operations.

4.6 Incomplete or Buggy Specifications

If a specification is incomplete, the interpreter may encounter a method applica-
tion for which it cannot produce a return value. For example, consider the partial
LinkedList specification used in Section 4.4: If Axiom 6 is missing, the interpreter
will not be able to produce the return value (true) for the term given above. If
a specification is buggy, the interpreter may produce an incorrect answer for a
method invocation (which it can detect right away if the user has supplied sim-
ulation subjects). In both of these cases, the interpreter reports the problematic
term to the user. As we show in Section 5, these diagnostics are invaluable for
producing a correct specification or debugging an existing specification. If the user
has provided simulation subjects, the interpreter can use the results produced by
the simulation subject to continue execution.

5 Evaluation

We now evaluate the performance and effectiveness of the algebraic specification
interpreter. Section 5.1 presents performance data for a micro-benchmark that

17

addFirst

sizeOfList
0 f } } } } } } } } }

0 100 200 300 400 500 600 700 800 900 1000

Figure 8: Term Rewriting Benchmark

suggests that our algebraic specification interpreter is usable for prototyping ap-
plications; the data also shows how the choice of algebraic axioms for modeling a
particular property affects runtime performance. Sections 5.2 and 5.3 give exam-
ples for the “extreme specifying” scenario (Figure 1), in which we use our algebraic
specification interpreter for developing specifications from scratch. Section 5.4 gives
an example for the “discovering and debugging algebraic specifications” scenario
(Figure 4).

5.1 Performance Evaluation

To evaluate the performance of our rewriting engine, we use the following bench-
mark, which is parameterized with size0fList.

1 Object o = new Object();

2 LinkedList 1 = new LinkedList();

3 for (int i = 0; i < sizeOfList; i++) 1l.add(o);
4 1.get(sizeO0fList-1);

This benchmark creates a linked list with size0fList elements (line 3) and then
retrieves the last element (line 4). In Figure 8, we plot the time it takes for the

18

rewriting engine to compute the result value of the get method call for line 4 in
the benchmark (y-axis) for different values of sizeOfList (x-axis). We measure
the execution times on a Dell PowerEdge 600SC Pentium 4 2.4 GHz with 2 GB of
RAM running Sun’s JDK 1.4.2 on SuSE Linux 8.1.

We present data for two different specifications of the get method. The get
method returns an element at a particular position in a list (counting from the
first element). The add method adds an entry to the end of a list, resulting in the
following specification of get:

forall 1:LinkedList forall o:0bject (Axiom 7)
get(addFirst(1l,0) .state,0) .retval==

forall 1:LinkedList forall o:0bject forall i:int (Axiom 8)
if i>=0 then get(addFirst(l,o0).state,intAdd(i,1) .retval).retval
== get(l,i) .retval

The addFirst method, on the other hand, adds an entry to the beginning of a
list, as expressed in the following alternative specification:

forall 1:LinkedList forall o:0bject forall i:int (Axiom 9)
if size(l).retval == i then get(add(l,0).state,i).retval == o

forall 1:LinkedList forall o:0bject forall i:int (Axiom 10)
if size(l).retval > i then
get(add(l,0) .state,i) .retval == get(1l,i).retval

The main difference between the two specifications is that the first one expresses
get in terms of addFirst while the second one expresses get in terms of add. Given
our simulation client, we would expect the second to be a better match because the
client also builds up the list in terms of add. More specifically, if we use the first
specification of get (Axioms 7 and 8), our rewriting engine will first have to rewrite
the term that corresponds to the entire linked list to be in terms of add before it
can start to reduce it.

Our results (Figure 8) confirm the intuition above. The horizontal axis of Fig-
ure 8 gives the size0fList parameter and the vertical axis gives the time in seconds
to execute line 4 of the benchmark. The addFirst and add curves give the execu-
tion times for the two specifications for different values of size0fList. We see that
the specification that matches the simulation client is faster than the specification
that does not match the simulation client. In future work we plan to implement
memoization techniques. Thus, subsequent invocations of get will be able to reuse
much of the work of rewriting the list term to use add instead of addFirst.

There are two points to take away from this data. First, while the prototype
implementation produced by our system is much slower than a hand-coded imple-
mentation (e.g., executing the benchmark for size0fList=1000 with the official
JDK implementation takes less than one millisecond), it may still be fast enough
to be used for prototyping of many applications. Second, some specifications may
execute much faster than other (equivalent) specifications, depending on the match

19

between the specification and the simulation client.

5.2 Extreme Specifying: Hash Set

Programmers can use our system to incrementally develop specifications (and thus
prototypes) based on the needs of the code they are developing. For example,
when developing a Java class (“client”), the programmer may not know all the
requirements on classes it uses (“helper classes”). Thus it would be premature to
develop the full specification of a helper class before writing the client. On the other
hand, the programmer cannot develop and test the client before writing a prototype
of the helper class. Our tool helps in this dilemma by allowing a programmer to
develop the specification (and thus a prototype) of the helper class incrementally as
needed by the client. This section presents a case study where we developed a partial
specification (and, therefore, an automatically derived interpreted prototype) of a
hash set hand-in-hand with the client of this hash set. We started by writing the
client:

1 class Client {
2> public static void main(String args([]) {

3 Integer one = new Integer(1);

4 HashSet s = new HashSet();

5 s.add(one) ;

6 System.out.println("test 1 = "+s.contains(one)); }}

At this point, we saw that the client needed a hash set, which had to support the
methods add and contains. Thus, we created the following incomplete specifica-
tion:

1 specification HashSetSpecification

2 class HashSet

s method NewHashSet is <void <init>()>

4 method add is <boolean add(java.lang.Object)>

5 method contains is <boolean contains(java.lang.Object)>
¢ define HashSet

Note that the specification includes a NewHashSet operation for creating a new hash
set. Also note that we started with an empty set of axioms (i.e., there was nothing
under the define HashSet directive). In other words, the interpreter could build
up the terms but had no rewriting rules to reduce them. When the “Client” class
and the specification were passed to the interpreter, the interpreter responded with:

Client.java, line 5: Algebraic Interpreter failed to compute a value.
term = add(NewHashSet() .state,Integer@1776) .retval
Client.java, line 6: Algebraic Interpreter failed to compute a value.
term = contains(add(NewHashSet().state,Integer@1776

) .state,Integer@1776) .retval

20

The first error message says that the interpreter could not determine the return
value of the invocation s.add. The second error message complains about not
being able to produce a return value for s.contains. To eliminate these error
messages and to compute the expected result, we added the following axioms:

forall o:0bject
add (NewHashSet() .state, o).retval == true

forall o:0bject forall h:HashSet
contains(add(h, o).state, o) .retval == true

The first axiom says that adding any object to a new hash set returns true. Note
that this is inadequate in general since it does not say anything about adding to
a non-empty HashSet. The second axiom says that immediately after adding an
object to the HashSet, invoking contains(add(h, o).state, o).retval returns
true. This axiom too is limited since contains returns true only if the element
being checked was the last one added. With these two axioms, however, the client
ran successfully.

We now continued implementing the client, inserting the statement
System.out.println("test 0 = "+s.contains(one)); immediately before
Line 5. Since this statement invokes a contains on an empty hash set, we also
added this axiom:

forall o:0bject
contains(NewHashSet() .state, o).retval == false

On running the modified client and specification set, our system gave the following
error message:

test 0 = true
Client.java, line 6: Algebraic Interpreter failed to compute a value.
term = add(contains(NewHashSet() .state,

Integer@7905) .state, Integer@7905).retval

The problem was that we forgot to specify how contains affects the state of the
object. This mistake is easy for programmers to make since they are primarily
thinking in terms of what contains does and not what it does not do. The debug-
ging output of our tool, which prints all rewriting attempts and intermediate terms
(too verbose to include in this paper), comes in handy at this point to find what is
missing from the axioms. Since contains does not modify the state of the set, all
we needed to add was the following axiom:

forall h:HashSet forall o:0bject contains(h, o).state ==

After this new axiom, the client executed successfully. Needless to say, the specifi-
cation of a hash set was still far from complete. When behavior was added to the
client class, our interpreter exposed more of the limitations of the specification. Ul-
timately, such an iterative process may lead to a complete specification of the hash

21

public class PriorityQueue {
public PriorityQueue(Comparator c){...}
public Object get(O){...}
public boolean equals(Object other){...}
public boolean add(Object object){...}
public boolean addAll(PriorityQueue collection){...}
public boolean contains(Object object){...}
public int size(){...}

Figure 9: A priority queue for Java

set. It is worth noting here that the quality of the test client is key to debugging
the algebraic specification. Thus, once a programmer has finished developing the
client (and thus the specification), it is worthwhile to generate more clients for the
hash set with the intention of “testing” the specification.

5.3 Extreme Specifying: Priority Queue

In this case study, one of the authors, previously untrained on our system, used the
specification interpreter to develop the algebraic specifications for a priority queue.

Figure 9 gives the class signature of this queue. In addition to the methods
given in Figure 9, the PriorityQueue also inherits the toString(), hashCode(),
and getClass() methods from Object. The constructor of the PriorityQueue
takes an instance of java.util.Comparator, which determines the preorder on the
queue’s values.

5.3.1 Initial Specification

Unlike the earlier case study of extreme specification (Section 5.2), in this case
study we started with a fairly complete manually-constructed specification. Figure
10 gives the sorts and operation types in the PriorityQueue algebra. We omitted
the methods inherited from Object from our specification.

Our initial specification had 36 axioms. Some examples are given below:

axiom forall p:PQ
add(p, null).state == p
axiom forall p:PQ forall o:0
add(p, o).retval == true

axiom forall c:C

get(PQ(c) .state) .state == PQ(c) .state
axiom forall c:C

get(PQ(c) .state) .retval == null

22

specification PriorityQueueSpecification

class C is java.util.Comparator
class PQ is edu.colorado.cs.PriorityQueue
class 0 is java.lang.Object

method compare is

<java.util.Comparator: int compare(java.lang.0Object, java.lang.0Object)>
method PQ is

<edu.colorado.cs.PriorityQueue: void <init> (java.util.Comparator)>
method add is

<edu.colorado.cs.PriorityQueue: boolean add(java.lang.0bject)>
method get is

<edu.colorado.cs.PriorityQueue: java.lang.Object get()>
method addAll is

<edu.colorado.cs.PriorityQueue: boolean addAll(java.util.Collection)>
method contains is

<edu.colorado.cs.PriorityQueue: boolean contains(java.lang.Object)>
method size is

<edu.colorado.cs.PriorityQueue: int size()>
method equals is

<edu.colorado.cs.PriorityQueue: boolean equals(java.lang.0bject)>

Figure 10: Header part of the Algebraic Specification for PriorityQueue

23

These four axioms specify the base cases for the add and get methods (im-
plementing enqueue and dequeue, respectively); they use the short sort name PQ
defined in the algebraic signature for PriorityQueue.

The axioms for inserting and removing data were more complex than the ones
for add and get. We started with the following:

axiom forall p:PQ forall o:0 (Axiom 11)
if compare(? , o, get(p).retval).retval > 0
then get(add(p, o).state).retval ==

axiom forall p:PQ forall o:0 (Axiom 12)
if 0 >= compare(7 , o, get(p).retval).retval
then get(add(p, o).state).retval == get(p).retval

Without discussing axioms 11 and 12 yet, note the question marks—we need to
replace these with an algebraic expression that computes the comparator passed to
the constructor of the priority queue. In our algebraic specification so far, there
was no way of accessing this comparator. We remedied this situation by adding a
new operator,comp, that returned the comparator. To hide it from the Java API,
we declared it as hidden.

axiom forall q:PQ forall o:0
comp(add(q, o).state).retval == comp(q) .retval

axiom forall c:C
comp (PQ(c) .state) .retval == ¢

axiom forall p:PQ forall o:0 (Axiom 11°)
if compare(comp(p), o, get(p).retval).retval > O
then get(add(p, o).state).retval == o

axiom forall p:PQ forall o:0 (Axiom 12°)
if 0 >= compare(comp(p), o, get(p).retval).retval
then get(add(p, o).state).retval == get(p).retval

5.3.2 Debugging the specification

To verify the correctness of our priority queue specification in the absence of a
priority queue implementation, we built a test suite for all of the methods we had
specified so far, comprising a total of 92 individual tests. We then ran this suite
using our interpreter to simulate the specification (which as mentioned above had
36 axioms).

Our interpreter exposed the following kinds of problems in our specification:

e Specification incompleteness

24

e Specification incorrectness
e Interpretation incompleteness
e Specification verbosity
Specification incompleteness Our interpreter exposed several cases when the

specification was incomplete. For example, the interpreter produced the following
message:

Algebraic Interpreter failed to compute a value. term =
size(PQ(edu.colorado.cs.PQTestClient$203842) .state) .retval

This message indicated that we had not fully specified size (PQ(x)). We cor-
rected this error by adding the following axiom:

axiom forall c:C
size(PQ(c) .state) .retval ==

The interpreter exposed a number of similar bugs. For example, there were
several cases where we specified the return value (.retval), but failed to specify
the effects on the receiver (.state). One of the more interesting cases was the
following:

Algebraic Interpreter failed to compute a value.
term =
size(get(get (add(PQ(...).state, ...).state).state).state).retval

The problem here was that we specified size only in terms of add, whereas the
irreducible term in the error message also makes use of get.

Interpretation incompleteness To make size to work with terms to which get
had been applied, we first attempted to introduce a new hidden method remove
which removed an element added to the queue. The motivation for this was that
the semantics for get could then be specified in such a way that any occurrences of
get could be rewritten to terms containing only add. Using such a remove method,
get could be specified as follows:

axiom forall p:PQ (Axiom 13)
if get(p).retval != null
then get(p).state == remove(p, get(p).retval).state

The intuition underlying this axiom was that whatever get returns should be
precisely the element removed from the state as a side effect of the execution of get.
This axiom, however, failed to work due to the previously mentioned limitations
of our term rewriting system (Section 4.5.2): To use the rule above, the rewrit-
ing engine would have to grow the term, which neither of our rewriting strategies
support.

Thus, we used the following specification instead:

25

axiom forall p:PQ forall o:0 (Axiom 13a)
if get(add(p, o).state).retval == o
then get(add(p, o).state).state == p

axiom forall p:PQ forall o:0 (Axiom 13b)
if o != get(add(p, o).state).retval
then get(add(p, o).state).state == add(get(p).state, o).state

Specification incorrectness We encountered several situations where our spec-
ification was incorrect: For example, we had unintentionally flipped the semantics
of the comparator. The interpreter enabled us to find and fix these problems easily.

Specification verbosity During the specification of equals, we needed one ax-
iom to specify the conditions under which two priority queues are equal, and another
to express the induction step for situations when equality cannot be determined
right away (i.e., where the first two elements of a queue are equal). In addition to
that, we needed the following three axioms to specify conditions when queues are
not equal:

axiom forall q:PQ forall c:C forall o:0
equals(add(q, o).state, PQ(c).state).retval

false

axiom forall q:PQ forall c:C forall o:0
equals(PQ(c) .state, add(q, o).state).retval == false

axiom forall ql1:PQ forall g2:PQ
if get(ql).retval != get(q2).retval
then equals(ql, g2).retval == false

These axioms cover all cases not covered by the equality and induction step
axioms, and their only purpose is to express that a failure to show equality implies
that false should be returned. Thus, we feel this specification is unnecessarily
verbose, which makes it hard to understand.

Summary After debugging our specification with the algebraic specification in-
terpreter, we ended up with 30 axioms. We were unable to check all of the axioms
for the equals and addA1l methods, because they would have required the rewrit-
ing engine to rewrite to larger terms.

We can address the specification verbosity of equals by introducing a notion
of default logic into our language and system, meaning, in this particular instance,
that a failure to show equality would imply inequality. There are tradeoffs involved
with this approach that we will explore in future work.

26

5.4 Discovering and Debugging a Specification: Array List

In this case study, we used our specification discovery tool [HD03] to generate a
specification for the java.util.ArrayList class contained in Sun’s Java Develop-
ment Kit. We then used the algebraic interpreter to debug the discovered specifica-
tion. Our client application is a BibTeX parser.* We chose this client application
because it is not dependent on libraries other than the Java standard libraries, it
uses collection classes, and we were familiar with the code.

Similar to what we describe in Section 5.2, debugging the discovered specifi-
cation is an iterative process consisting of three steps: (i) using the specification
interpreter to run the client application, (ii) understanding the debugging output,
(iii) adding new algebraic axioms to the specification or modifying the existing
axioms.

Out of the 10 algebraic axioms needed to execute the BibTeX parser successfully,
our discovery tool can produce 3 axioms exactly as needed. As an example, the
following two axioms specify how the first element of an ArrayList can be obtained
by applying the get operation for index 0:

forall x0:0bject (Axiom 14)
get(add(ArrayList() .state,x0) .state,0) .retval == x0

forall 1:ArrayList forall ol:0Object forall o2:0bject (Axiom 15)
get(add(add(1l,o0l) .state,02) .state,0) .retval
==get(add(1l,01) .state,0) .retval

We manually added 7 axioms to the specification. Five of those axioms describe
the behavior of Iterator instances generated by ArrayList objects. For example,
the following axiom states that an iterator created from an empty list does not have
a next element:

hasNext(iterator(ArrayList() .state) .retval) .retval==false

Adding four of the axioms which describe the behavior of Iterator was straight-
forward. The following axiom was more involved:

forall 1l:Arraylist
next(iterator(l) .retval) .state
==jterator(remove(l,0) .state) .retval

This axiom describes how the next operation applied to an iterator transforms the
iterator’s state. Unfortunately, if this axiom was used as a left to right rewrit-
ing rule, it would increase the size of the term. Thus, our interpreter would not
use it (see Section 4.5.2). We introduced a hidden operation removeFirst, which
eliminated the problem:

forall 1:ArrayList (Axiom 16)
next (iterator(l) .retval) .state
==iterator(removeFirst(l) .state) .retval

4 Available at www.cs.colorado.edu/"henkel/stuff/javabib/.

27

The two remaining axioms we had to add describe the behavior of the hidden
operation removeFirst. The specification discovery tool can find variations of
both axioms which use remove(_,0) instead of removeFirst(_). For example, it
found

forall x0:0bject
remove (add(ArrayList() .state,x0) .state,0) .state
== ArrayList() .state

ArrayList has a large number of operations, which means that many axioms
are needed to fully document it. By using the specification interpreter, we focused
on the axioms needed for a particular run of our client application. In other words,
understanding the 10 executed axioms of our specification is enough for understand-
ing the behavior of ArrayList for the particular run; the 10 executed axioms can
be considered a dynamic slice of the specification.

More details about this case study, including all discovered axioms, are available
in a technical report [HD04a).

6 Related Work

Previously [HDO03] we described a system that can discover algebraic specifications
automatically from Java classes. The output of that system can be used as a starting
point for developing a specification of an existing Java class. The current paper and
our previous paper share the goal of making formal specification techniques more
appealing for practical use. Both techniques use the same specification language
and are designed to be used together.

There is a vast body of prior work on term rewriting systems [DP01, TeR03].
Prior work has also studied the idea of using term rewriting to simulate a soft-
ware component. For example, Wang and Parnas proposed the trace rewriting
method to simulate software modules [WP94]. However, they focus on the rewrit-
ing technique for their system and, unlike us, do not integrate their system into a
programming language or provide details of an implementation. Implementations
of other rewriting engines and rewriting language have been used to provide pro-
totyping [Fut03, DV03, TeR03], but again, to our knowledge, they do not interact
with a client written in a modern programming language. Thus, these systems do
not provide the software engineering benefits that our approach offers. Antoy and
Hamlet [AHOO] propose self-checking ADTs, which integrate rewriting into C++
and Java classes. Among other details, our system differs by (i) fully automat-
ing the integration of Java code and the algebraic interpreter with a custom class
loader, and (ii) a more expressive algebraic specification language that has been
customized for being embedded into Java (e.g., we allow operations to both modify
the state of an object and return a value). Antoy and Hamlet manually implement
representation mappings as C++/Java functions to allow intensional comparisons,
which might be a useful addition to our current system.

Other previous work uses algebraic specifications as assertions to check whether
implementations are consistent with a given specification [GMHS81, HS96, DF94,

28

CTCO01, CTCC98, San91]. Some of these systems require test drivers to be writ-
ten (e.g. [GMHS1]), others generate test cases by themselves from the algebraic
specifications [DF94, CTC01, CTCC98]. Sankar [San91] uses a theorem prover to
determine which of the algebraic terms generated by a running program need to
be equivalent and then checks whether the implementation implements the equiv-
alences correctly. While some of these systems interact with real implementation
languages, our system is different in that it (i) seamlessly integrates with a real im-
plementation language by exploiting reflection and dynamic class loading in Java;
and (ii) automatically constructs a prototype from an algebraic specification.

7 Conclusion

We describe a system for helping developers in documenting their classes using
algebraic specifications.

First, we describe a new algebraic specification language which is more closely
tied to the implementation language (Java) than previous languages; in particu-
lar, our language establishes a 1-1 correspondence between Java signatures and
algebraic signatures. This feature should make writing algebraic specifications less
daunting for programmers.

Second, we describe and evaluate an algebraic specification interpreter that is
seamlessly integrated with Java. The interpreter creates a prototype implemen-
tation of a class from its algebraic specification. A Java program can use this
prototype implementation just like any hand-coded implementation of the class.
The algebraic specification interpreter helps in writing and debugging algebraic
specifications because programmers can now execute their specifications and op-
tionally compare the execution of the specification to a hand-coded implementa-
tion. Executing the specifications exposes both errors and missing axioms in the
specifications.

Third, we describe four scenarios in which programmers can use our tool.

Finally, we evaluate both the performance and usefulness of our interpreter. We
evaluate the performance of the interpreter by timing it on example specifications.
We evaluate the usefulness of our interpreter by using it for a number of case
studies that span two of the four scenarios described above. We demonstrate that
our system is indeed effective in helping programmers document their code using
algebraic specifications.

Acknowledgements

We thank the members of CU Boulder’s programming languages group, the mem-
bers of CU Boulder’s software engineering research laboratory, members of the
software technology department at IBM Research, and the anonymous referees for
POPL, ECOOQOP, and ICSE for listening to our ideas and giving great feedback.

29

References

[AHO0]

[Apa03]

[CTCO1]

[CTCCY8]

[DF94]

[DPO1]

[DV03]

[Fut03]

[GHTS]

[GMHS1]

[HDO3]

[HDO4a]

S. Antoy and D. Hamlet. Automatically checking an implementation
against its formal specification. IEEE Transactions on Software En-
gineering, 26(1), January 2000.

Apache Software Foundation. BCEL—byte code engineering library,
2003. http://jakarta.apache.org/bcel/.

H.Y. Chen, T. H. Tse, and T. Y. Chen. TACCLE: A methodology for
object-oriented software testing at the class and cluster levels. ACM
Transactions on Software Engineering, 10(4):56-109, January 2001.

H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen. In black and
white: An integrated approach to class-level testing of object oriented
programs. ACM Transactions on Software Engineering, 7(3), July
1998.

R. Doong and P. G. Frankl. The ASTOOT approach to testing object-
oriented programs. ACM Transactions on Software Engineering, 3(2),
April 1994.

N. Dershowitz and D. A. Plaisted. Handbook of Automated Reasoning,
volume 1, chapter Rewriting. Elsevier, 2001.

Nachum Dershowitz and Laurent Vigneron. Database of rewriting
systems. http://www.loria.fr/ vigneron/RewritingHP /systems.html,
2003.

Kokichi Futatsugi. CafeObj official homepage.
http://www.ldl.jaist.ac.jp/cafeobj/, 2003.

J. V. Guttag and J. J. Horning. The algebraic specification of abstract
data types. Acta Informatica, 10:27-52, 1978.

J. Gannon, P. McMullin, and R. Hamlet. Data-abstraction implemen-
tation, specification and testing. ACM Transactions on Programming
Languages and Systems, 3(3):211-223, 1981.

Johannes Henkel and Amer Diwan. Discovering algebraic specifica-
tions from Java classes. In Luca Cardelli, editor, FCOOP 2003 -
Object-Oriented Programming, 17th European Conference, Darmstadt,
July 2003. Springer.

Johannes Henkel and Amer Diwan. Case study: Debugging a dis-
covered specification for java.util.arraylist by using algebraic interpre-
tation. Technical Report CU-CS-970-04, University of Colorado at
Boulder, 2004.

30

[HDO4b)

[HS96]

[Mit96]

[San91]

[TeRO3]

[TWW82]

[VRGH*00]

[WP94]

Johannes Henkel and Amer Diwan. A tool for writing and debug-
ging algebraic specifications. In International Conference on Software
Engineering (ICSE), 2004.

M. Hughes and D. Stotts. Daistish: Systematic algebraic testing for
OO programs in the presence of side-effects. In Proceedings of the
International Symposium on Software Testing and Verification, San
Diego, California, 1996.

John C. Mitchell. Foundations of Programming Languages. MIT Press,
1996.

S. Sankar. Run-time consistency checking of algebraic specifications.
In Proceedings of the Symposium on Testing, Analysis, and Verifica-
tion, Victoria, British Columbia, Canada, September 1991.

TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2003.

J. W. Thatcher, E. G. Wagner, and J. B. Wright. Data type speci-
fication: Parameterization and the power of specification techniques.
ACM Transactions on Programming Languages and Systems, 4(4),
October 1982.

Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,
Patrice Pominville, and Vijay Sundaresan. Optimizing Java bytecode
using the Soot framework: Is it feasible? In Compiler Construction,
9th International Conference (CC 2000), pages 18-34, 2000.

Y. Wang and D. L. Parnas. Simulating the behavior of software mod-
ules by trace rewriting. ACM Transactions on Software Engineering,
20(10), October 1994.

31

