Analysis of Imperative XML Programs

Christoph Reichenbaéh

University of Colorado at Boulder

Michael G. Burke

IBM T. J. Watson Research Center

Igor Peshansky

IBM T. J. Watson Research Center

Mukund Raghavachari

Google Inc.

Abstract

The widespread adoption of XML has led to programming laggsdhat support XML
as a first class construct. In this paper, we present a metiroahfalyzing and op-
timizing imperative XML processing programs. In partiaulae present a program
analysis, based on a flow-sensitive type system, for detgbtith redundant computa-
tions and redundant traversals in such programs. The asnhbysdles imperative loops
that traverse XML values explicitly and declarative quereer XML data in a uni-
form framework. We describe two optimizations that takeaadage of our analysis:
one merges queries that traverse the same set of XML nodésharother replaces
an XPath expression by a previously computed result. We dstraie performance
improvements for selected XMark benchmark queries and &§kample queries.

Key words: Program analysis, XML, Imperative programming

1. Introduction

XML processing applications in imperative languages susldava and C# use
runtime APIs such as DOM2[], or language-based approaches such as XL3jq [
XJ [6], or XAct [9]. In either case, the programmer is provided with an XML data
model and navigational constructs. The XML data model iscity an object view,
where each element in an XML document is instantiated as gt he navigational

1This work was supported in part by NSF Grant ST-CRTS 0540997

Preprint submitted to Elsevier March 11, 2009

constructs range from library routines that access childfea node in an XML tree,
to comprehensions, to queries in declarative query langgisgch as XPati2()].

The imperative nature of systems such as XLinq and XJ posdenlges that differ
from those in declarative languages such as XQuery. Cortsidgorogram in Figuré
written in a language based on XJ. Assume that in Ling &, set to refer to some
XML value. The XPath expression on Line 2 can be interpretedamputing the set
of all descendants of the root of the tree referred toxlsuch that each member of
the result is labeleook and has an attributguthor with value’Poe’. Similarly, the
XPath expression on Line 5 can be interpreted as computimgehof allpublisher
descendants of. Some challenges in the optimization of such programs are:

e Query identification: Queries may be latent in a program where program-
mers combine imperative traversals (with variable assgmtinwith declarative
gueries. Consider the loop that begins on Line 7 of Figur&€he statement on
Line 10 can be interpreted &s= k U {i}—the accumulate operator=” models
the invocation of a method such add on an instance of thBet class in Java.
Observe that at the end of the lodpis guaranteed to contain the same value as
y. While the loop itself is not redundant (it has effects), timeputation ok
certainly is.

e Optimizations across Multiple Queries: The detection of two queries (or sub-
gueries) that return the same results could be used to reraduadant compu-
tation. The complication in this analysis is that there aemynways of writing
equivalent queries (including as explicit loops), whickgudes the use of syn-
tactic techniques such as value number@]J. In all executions of the program
of Figurel, the variables on Line 4 will refer to the same value gs-the com-
putation ofv is redundant.

Further, two different computations over an XML tree mayitwise same set of
nodes, even if they do not produce the same value. If so thebdnputations
could be combined to return the two results in a single tsadeil his transforma-
tion is calledtupling. Consider the expressions in Lines 2 and 5. They traverse
the same set of nodes (the subtree rooted adbut filter these sets in different
ways—Dboth sets of results can be produced efficiently in cawetsal.

This paper studies the analysis of imperative XML procesgirograms, where
traversals over data may be specified in many ways—as eipligis over data and in
terms of XPath expressions. We present a program analgsiedon a flow-sensitive
type system, for detecting both redundant computationsraddndant traversals in
such programs. The analysis handles both loops that teavévk. values explicitly
and declarative query expressions in a uniform framewoutk. éxposition, we focus
on a core language for XML processing based on the XJ progragilanguage.

The contributions of this paper are an analysis, based onvasimsitive type sys-
tem, that computes a symbolic representation of the valassnaed by each XML
expression or variable in a program; a proof of correctnésiseoanalysis; a descrip-
tion of transformations enabled by the analysis; expertalaesults that provide a
preliminary demonstration of the effectiveness of thedfarmations.

System.out. printin(i);
if (i[@author="Poe’])
k < i

1 x = ...

2 'y = x/lbook[@author="Poe’];
3 u = x//book;

4 v = u[@author="Poe’];
5 z = x/lpublisher;

6 k =g;

7 foreach i in u {

8

9

0

1

e

Figure 1: Example demonstrating redundant computations.

Structure of the Paper. Section2 introduces the XML processing language that we
use as the basis of the exposition of our analysis. In Se@tiwa describe the types
that track the values of expressions and variables in pragirand formally define cor-
rectness criteria for our analysis. In Sectibwe present a flow-sensitive type system
for detecting redundant computations and traversals. Werite the transformations
enabled by the analysis in SectibnSection6 discusses how our approach can be ex-
tended to a fullimperative language such as XJ. Segtaescribes our implementation
and experimental results. SectiBipresents related work. We conclude in Secton
and give a proof of correctness of our analysis as an appendix

2. Syntax and Semantics

We model XML documents as ordered, labeled tréeefers to the set of all such
trees, andV is the (infinite) set of all nodes used in treestin Each node: in each
XML tree has unique identity and a labekhBEL (n), drawn from an infinite alphabet
¥ (we use uppercase charactefs B, C) to represent members bf).

We focus on a fragment of XPath 1.8(], whose (somewhat non-standard) syntax
is listed in Figure2. The evaluation of an XPath expression is always with respec
to a set of nodes in XML trees (the nodes could belong to diffeXML trees) and
the result is another set of nodes. The operatoand | ™ represent thehild and
descendantraversals, that is, they return the union of the set of cbildand the set of
descendants of the nodes in the input node set, respecingihe syntaxs ranges over
Y and it represents a node test, which filters its inputs wispeet tos. The semantics
of these expressions is standard and is also provided imd-2ju

We describe a core imperative language for XML processiag serves as the
domain for our static analysis (Figug. For simplicity, we have not included XML
literal-based construction, XML updates, effects (such@sr Java-like constructs),
a more expressive XPath fragment, or schema informatiomircore language. The
handling of these constructs is mostly orthogonal to theraémdeas of this paper.
We use this compact core language for the exposition and pfamundness of our
analysis. A proof of soundness for the core language itrstrinteresting features of

Xpu=e| | | |7 |s|Xp/Xp| Xp[Xp] | Xp[-Xp]

[1:PW) = PWN)

[)(N) =N

[LI(N) = U{child(n) | n € N}
[LT](N) = U{descendant(n) |n € N}
[s](N) ={n € N | LABEL(n) = s}

[Xp1/Xpo](N) = [Xpo]([Xp1](NV))
[Xp1[Xpo]I(N) = {n € [Xp,](N) | [Xp,]({n}) # &}
[Xpy [~ Xp,]I(V) = {n € [Xp,|(N) | [Xp.]({n}) = &}

Figure 2: Syntax and semantics of XPath-like expressioresfufther use parentheses for disambiguation.

Var := Id | Index| Doc
Expr = Var|Var/ Xp|o@
Stmt = Id = Expr

Id < Expr

if (Expr) then Stmtelse Stmt
foreach Indexin Expr Stmt
Stmt; Stmt

skip

Figure 3: Language syntax.

a proof for an imperative language such as XJ, and offersafbasinderstanding how
to treat extensions of the core language (SecBpn

In the language, there are three disjoint, finite sets oatdes—d, Index andDoc.
Indexvariables may only appear fareach statements, where eafdreach statement
has a uniquéndexvariable. TheDoc variables represent some input XML document
or XML construction. Onlyld variables may be on the left-hand side of assignments
or accumulationsindexvariables are updated implicitly by loops aBac variables
remain constant through the program.

The semantics of program execution is provided in Figuré\ value in the lan-
guage is a subset of/. A storec maps each program variable to such a value.
(S,0) | o/, whereo, o’ arestores represents that the evaluation of statentetakes
the program from store to o’. (Expr, o) = value states that expressidixpr evalu-
ates tovalue, given stores.

In the initial store, eachd variable used in the program is mappedzpand each
Doc variable used in the program is mapped to the root node of $terdén¥. The
expressionar/Xp evaluates the XPath expressi&ip with respect to the set of nodes
specified byvar.

VAR XPATH EMPTY

(z,0) = o(z) (z/Xp,0) = [Xp](o(2)) (9,0) F &
ASSIGN ACCUM
(Expr,o) E N (Expr,o) E N N =o(z)UN
(x=Expr,o) | o[z — N] (x < Expr,o) || o[z — N]
IF-THEN IF-ELSE
(Expr,c) = N,N # & (S1,0) | o (Expr,o) = @ (S9,0) | o
(if(Expr) then S; else Sy, o) || o (if(Expr) then S; else Sz, o) | o
FOREACH SKIP
(Expr,o) = {z1,22,..., 2k} A ——
(S.olim)] Vo (skip.) 4 o
: COMPOSE
(S, 0610 = {ax}]) I on (S,o) 4o’ (80) 4"
(foreach i in Expr S, o) |} oxi — @] (8;8",0) | o

Figure 4: Language semantics.

A program is &Stmt Theforeach loop iterates over the value denoted byHtspr,
which we call the loop’steration spacefor each node in this set, it binds thedex
variable to a singleton set consisting of that node, and @vatuates th&tmtin the
new store. Since an index variable is only defined within g@Jdtds removed from the
result store of the loop. The executionfofeach is non-deterministic (the elements
are visited in some unspecified order). The staterakipt has no effect on the store.
The accumulate statemenrt= y, setsx to the equivalent ok U y. Observe that one
can express general union operatidres,x =y U z, with a pattern likex = y; X < z.

Consider the code sample in FigirelLine 1 setx to the singleton set containing
the root of some XML tree that is referred to by tBec variabled. The foreach
loop on lines 3—7 iterates over an XPath expression evalweitd respect to the value
referred to byx. This expression returns a set of nodes containin@allescendants
of the root node of the tree referenced in Line 1. In eachtiwmeof the loop, if a
particularB node has &' child, then theB node is added tg. At the end of the loop,
y will refer to the equivalent of the expressigfi */(B[|/C]).

3. Types

The types in our type system are the “don’t know” typespthe “empty” type or
@, which denotes that a variable or expression evaluates ¢mguty set; types of the
form (x, Xp, ¥), whereV is a se{¢1, . . ., ¥ } and eachy; is of the formr or —7 with

1 x =d;

2y =g,

3 foreach i in x/ |t /B
4 if (i/]/C) then

5 y < i

6 else

7 skip

Figure 5: Sample program.

7 a type, and union types; @ 7. This gives us a type lattice with as the bottom
and¢ as the top element.

Ta=¢|o | (X Xp, V)| T

U= {wla-- -,wk},wherez/}i =T | -7

In a type(x, Xp, ¥), x is either aDoc or anIndexvariable, andXp is an XPath ex-
pression. For such a type, we referxtas thecontext variableof the type, andl
as thefilter of the type. If a variable has the typd, ¢, @), under all executions, the
variable refers to the value to which the store mdp3he type(d, ¢, ¥) is equivalent
to (d, ¢, @) if the denotation of eacti € ¥ is non-empty, and t& otherwise.
For example, consider the tyie, A, @): This type describes precisely the type of
all elements in the XPath expressio. If we now add a filte{ 7}, then(x, 4, {7})
may describe one of three things:
1. If 7 does not describe any elements, then neither @aes, {7}).
2. If 7 describes some elements, tHenA, {r}) again describes all elements in the
pathx/A.
3. If 7 denotes the type of the distinguished ‘don’t-know’ §ethen we don’t know
whether or not it applies as a filter; thus, we must interfxeti, {7}) as¢ also.

More precisely, the denotation of a typeis defined in terms of a special store
D. This denotation[7]p, is a subset of\" or a distinguished sef. Since[—]p
only depends ooc variables, which never change during the course of the progr
[-]p is independent of any execution state. Without loss of gditgrwe assume in
the remainder of this document that all stoseare withinDoc pointwise equal. We
then define the semantics of our types as:

[€lp = ¢ [@]lp =@ [71 ®]p = [n1]p U [r]b
[Xp](D(x)) satisfied(¥) = true
[(x, Xp, ¥)]|p =1 & satisfied(V) = ¢
[] otherwise

The functionsatisfied (V) is a three-valued logic function:

13 revvVv-re¥ [r]lp =¢.
satisfied(V) = ¢ true V7 € U, [1]p #2 AV-T €V, [r]p =2

false otherwise

A typing environmentl’, maps program variables to types. Our goal is a type sys-
tem that ensures that if two variabbeandy are assigned equivalent types at a program
point, then in all executions of the prograxmndy refer to identical values at that pro-
gram point. Our notion of equivalence here is semantic inneatWe find it sufficient
to require this notion of equivalence, to be a conservative approximation (sound but
not necessarily complete) of full semantic equivalence siatisfies certain minimal
properties. These properties are relevant for our coresstproof (Appendif0.4 and
can be helpful during implementation. We require tfs&a} at least (i) relates syntac-
tically identical types; (i) satisfies the rewriting rulfem Table6; and (iii) satisfies
a further non-discrimination property (Definitidty). We later motivate and discuss
individual rewriting rules in detalil.

A storeo is consistentvith a typing environment, iff forall x : 7 € I', 7 = £ or
[7]1p = o(x). With this definition of consistency, we define soundnessbavis:

Definition 1 (Statement Typing Soundness)If a storecs is consistent withl’, and
I'{S}T"and(S,o) | o', thens' is consistent witH"”.

By I' {S} IV, we mean that if the type system starts in environnignthe en-
vironment at the end of is IV. Specifically, if a storer is consistent with' and
I'(x) = T'(y), andl'(x) # &, thenx andy contain the same value at that point.

In the following, we develop a type system with this property

4. A Flow-Sensitive Type System

We first consider a type system for detecting when variablest nefer to the same
value in programsvithoutloops. We then extend this type system to support loops.
The typing judgments for expressions (Figiyere of the fornT" - Expr: 7.

It is straightforward to show that if a stoeeis consistent with respect to an envi-
ronmentl’, and(Expr, o) = N, thenl' - Expr : 7 implies thatr = or [r]p = N.

4.1. Analyzing Programs Without Loops

Figure8 lists the judgments of our type system for statements ottsrforeach.
The judgments are of the forin {S} TV. A programs is well typed ifT'y {S} I is
derivable, wheré'y assigns thes type to eachd variable, andd, ¢, &) to eachDoc
variabled.

The rule for accumulation reflects the set-based semarftibe @peration — the
resulting type is the union of the types of the two expressiarthe accumulation.

ThelF rule is designed to handle cases such as the following statiem

if ctheny =c/Xp, elsey=g

If the type of the variable is (d, Xp,, @), then ideally the analysis should derive the
type (d, Xp,/Xp,,) for y at the end of the conditional. In any execution of the
program, the store would either mapo & or to a non-empty set of nodes. In the first
case, theelse branch would be taken, affdd, Xp,/Xp,, @)]p = @, which is sound.

If ¢ is non-empty, then agaii, Xp, / Xp,, @) would be an appropriate type according
to thex/ Xp rule in Figure?.

TIOT2=0n (comm)
(&R EnB<=7d(rdT3) (assog
(z, Xp, {r} U ¥)

&(z, Xp, {~7} U D) = (z, Xp, V) (if (7)) (join)
(2, Xp,{m ® 1} U¥) = (z, Xp,{m1, 2} UT) (flat-0)
(, Xp,{~(11 ® =)} UV) = (x, Xp,{-71, "2} UT) (flat-0")
(=, Xp, {(y, Xp", V)} U W) = (x, Xp, {(y, Xp', @)} UL U T') (flat-1)
(z, Xp, {=(y, Xp', W)} U¥) = (2, Xp, {~(y, Xp, @)} U T U (=9")) (flat-1)
TOD =T (empty
(X, Xp, (X, Xp, ¥)) = (x, Xp, V) (selfdep
(X, €/ Xp, V) = (x, Xp, ¥) (Xpe)
(X, Xp/e, W) = (X, Xp, V) (Xpe’)
(X, (Xp/Xp")/ Xp", ¥) = (x, Xp/(Xp'/ Xp"), ¥) (xpassog
TOE={ (®€)
(%, Xp, {£FUT) = ¢ (w¢)
(X, Xp, {~§}U V) = ¢ (=)

Figure 6: Type equivalence rules, expressed as rewritifegs ruVe require the equivalence relatisnto
respect the above rules. In the rujeirf), predicatet () holds iff 7 does not syntactically contat

X:7el I'EXx:7
r-o:o 'Ex:r I'-x/Xp:70Xp
EoXp=¢ ToXp=9g (X, Xp1,¥) o Xpy, = (X, Xpy/Xpy, ¥)

(1@®7")oXp=(r0Xp)® (7' 0 Xp)

Figure 7: Expression type system.

The typing rule evaluates thben andelse branches of aif statement indepen-

dently. Themerge function is used to unify the environments obtained in the tw

branches. Its definition depends on that of the type consirud]. For a typer and

ASSIGN ACCUM

I' HExpr: 7 I' FExpr: 7 Nta:7
I'{z = Expr} [z — 7] I'{z < Expr} [z — 1" 7]
IF
SEQ I'FExpr:7
r{s,}1r’ I {S2} T r{s,}1’ I {Sy}1” 'y = merge(I",T", 7)
I {S1; 8} T T {if Exprthen S; else S} Ty
SKIP
T {skip} T

Figure 8: Type system for programs without loops.

¥, wherey is of the formr’ or —7/, we definer[¢)] as follows:

3 T=EVr i =¢
] = 1%} T=ONT £
T nweny] r=nenAr e

(d, Xp, W U{y}) 7= (d Xp, W)AT" #¢

Definition 2. Themerge(I',I'”, 7) function yields a new environment; such that:

!/ !/ — 1
merge(I”. I 7) () — {r (x) I(x) =T"(x)
IV(xX)[r] @ T”(x)[~7] otherwise
In short, themerge function encodes the control dependency in the type of a vari
able to ensure greater precision. In our example, the egulgpe fory would be
(d, Xp,/Xpy,2) in T, and@ in T, The merge function would generate the type
(d, Xp,/Xps,{(d, Xp,, 2)}) @ &, which can be simplified t¢d, Xp, / Xp,, @), which
is equivalenttd’;(c) o Xp, (Wherel'; is again the environment determinedrbgrge).

4.2. HandlingForeach Loops

We now consider the one missing part of our earlier spedificahamelyforeach
loops of the form

foreach i in PATH { BODY }

Our goal is to determine the types of variables assigneddo@rmulated on within
the loop body. In some cases, we can determine the typessiypbserving the kinds
of operations performed; we consider these cases first.{aonge,

foreach i in d/Xp {
a=i;
}

Here, ourassiGNinference rule specifies that the typeaoshould be whatever the
type ofi is. While this is appropriate locally, it is inadequate aftee loop:a should
have the type of the last elementdhXp. Since we have defined the traversal order
of foreach loops as nondeterministic, we cannot express this con€apisequently,
we must assig@ the type¢; this generalizes to all assignments that involve the loop
variable on the right-hand side.

Now, consider assignments that do not involve the loop tbitia

foreach i in d/Xp {
a=y,;
}

According toASSIGN, a : (Y, e,). However, this type judgment is incorrect outside
of the loop: if[d/Xp] = @, then the loop body will never execute — and therefre
would remain unmodified. Thus, we should give the same typa&vadd give in the
program

if (d/Xp)

a=y;
else skip;
Of the remaining block constructs, both sequencing anditiondls turn out to be

innocuous. This leaves us with accumulation. First comsdeumulation that does
not involve the loop variable:

foreach i in d/Xp {
a <y,
}

This example has the same problems as assignment, in thay ibenconditional, and
we can handle it equivalently.
Finally, consider accumulation with a loop variable:

foreach i in d/Xp {
a < i;
}

In this case, tha accumulates all elements selectedtfXp. If a : @ held before
the loop, we therefore expeat: (d, Xp, o) after the loop, otherwise a union type
involving whichever type previously populated

We have now found type assignments for all interesting saena/Ve now describe
how to detect these scenarios and integrate them with ostirgxityping rules (Fid).

For the existing rules to serve as the basis for detectiorasg@gn loop variables
to a distinguished type. We assign (i, ¢, &), allowing us to distinguish types that
involve the loop variabléfrom types that do not. Distinguishing accumulation of loop
variables from assignments of loop variables is more difficConsider the loop body
in the following program:

foreach i in d/Xp {
a < |1,
b =1i;

10

Considering only the loop body, we arrive at the distincimggudgments

a : (i, 9)
b : (i,€,9)

However, union types can arise in other ways also, sea#ig/ping rule. There is
one crucial difference between assignments in conditsarad aggregation that we can
exploit, though: conditional assignmes#tstypes, while aggregatiomodifiestypes,
and (in particular) retains its previous type as part of #wilting union.

In practice, it can be hard to track exactly what this presgitype is. Therefore
instead of typing the loop body with the concrete environnpeaceding it, we type it
starting with a specially tagged environment that exposesraulation, and later graft
this “special” environment onto the previous environment.

More concretely, we begin with an environment

1—‘0:{.7’_’ (j,e,@)}

that maps not only document variables, but dlstexandld variables to a specially
tagged type. We then compute an environnigntia our existing type inference rules,
asin

To{S}Ts

Assume a fixed but arbitrarfpreach loop with index variableé. I'y then defines
the effect of the loop, as follows:

o I', -z : (x,¢,9): means that was not modified in the loop (or, if it was
modified, it was set back to its original value). We can thasdethe type of:
alone.

e ' Fz:(x,60)® (i, Xp, ¥): means that has accumulated First, = refer-
ences the loop variable — this means thatbsorbs all elements of the iteration
space (modulaXp and ¥). Secondly,x references itself, unmodified — this
means that, during each iterationpreserved whatever contents it held in the
previous iteration (and before the loop). Correspondingly replace it by the
iteration space of the loop, processed and filtered aXpeand V.

e While there are other cases we can handle effectively, welveays default to
¢ if we are not sure of the outcome.

This approach works well in most instances, but it leavesidmsv we should deal
with occurrences ofin ¥. While we can always map such variablegtave can do
better. First consider how such types arise:

foreach i in d/A {
if i/l/B
X< i;
else skip;

11

Here, we arrive at the type

ToF{x : (el /B,@}) e el /B o)} e xe{~l/B2)}

The type ofx is somewhat involved. To understand it properly, we firsertbtee
equivalences (in the form of rewriting rules) that allow asimplify the type:

IO = 0N (comm)
(MOn)OTmn =10 () (asso¢
(z, Xp, {7} U W) @ (z, Xp, {~T} U V) < (z, Xp, V) (if £(7)) (join)

whereg(7) iff 7 does not syntactically contairéa All rewriting rules employed in this
section are summarized in Figuse
Using the above three rewriting rules, we arrive at the seically equivalent type

Psbx:(x6,9) @ (i,6,{(i,| /B,2)})

Were we to translate this type with the same scheme as abewepwld interpret our
result as mapping : 7 to T @ (d, A, {(d, A/ | /B,)}). This type means “if there
is any node id/A/ | /B, then addd/A to 7, otherwise leave alone”. But if we
examine the loop that definegdwe notice that its semantics are “for each node/iA,
if this node has a child witt3, add it” — which we can also express@sA[| /B].
Therefore, our approach gave the wrong result. The reagothifis that each
individual instance of adding coincided with a condition only on that particular
instead of on the entire iteration space. In our solutiorolwelwe address this by
rewriting dependences drin ¥ to conditions on the XPath fragment, in a function
flatten.

flatten; (i, 4, {(i, B, {(x, C,2))})) = (i, A,{(i, B,2), (x,C,2)})

Before this step, we simplify our types. Note that condiiomay be nested arbi-
trarily deeply inside each other, as in

(Cv € {(da € {_‘(ev €.)})})

It can be hard to see what the semantics of such types aravBadshow how we can
simplify types to eliminate deep nesting.

Definition 3. A type 7 is predicate-freeff = € {¢,2} or7 = 71 ® 7o andry, 7, are
both predicate-free, or if = (z, Xp, @).
Conversely, a type ipredicatedf it is not predicate-free

We have defined the absence of predication as a syntactienypihough there are
some types that are inherently predicated (i.e., cannog¢Watten into predicate-free
types), such a&, Xp, {(d, Xp’, @)}). This type depends on two different root nodes,
so we cannot simplify it. However, we can reduce them to alsitayel of nesting,
yielding predicate-normatypes:

12

Definition 4. A type 7 is predicate-normalff = € {¢, o}, 7 = 71 @ 7 and both
71 and, are predicate-normal, or if = (z, Xp, ¥), and for all7’, -7’ in ¥, 7’ is
predicate-free.

Lemma 1. For each typer, there exists a semantically equivalent typesuch that’
is predicate-normal.

Proof. We can rewrite each type that is not predicate-normal to @ tiyat is predicate-
normal by repeatedly applying the following semanticsspreing rewriting rules:

(2, Xp, {n & }UV) = (z, Xp,{m, 2} UT) (flat-0)
(z, Xp,{=(11 ®72)} UV¥) = (2, Xp, {71, 2} UD) (flat-0")
(z, Xp, {(y, Xp", ¥)} U V) = (z, Xp, {(y, Xp', @)} UT U T') (flat-1)
(2, Xp, {~(y, Xp', W)} UW) = (2, Xp, {~(y, Xp/, 2)} UW U (~0")) (flat-1')
where—{r,..., 7.} = {-n,..., -7} and——7 = 7. We defer the proof of correct-
ness for the above rules to Theor&8m O

With our notion of predicate-normal types, we define a helpection:

Definition 5. Letr be atype. Thepn(r) is a predicate-normal type such tipatr) =
T.

As we know from Lemmd, pn is total. However, there may be many such functions;
without loss of generality, we can pick any one of them.
We use the notion of predicate-normal types to simplify tefmition of flatten:

Definition 6.
fold; (e[Xp']/ Xp, W) ¥ ={(i, Xp',)} UV
fold; (Xp, W) = { fold;(e[~Xp']/Xp, V') ¥ = {(i, Xp', 2)} UV’
(i, Xp, ¥) otherwise
flatten;(r,) © flatten;(12) 7' =71 O 7
fold; (Xp, ¥) ™ =(i,Xp,¥)
, :
flatten;(7) = ¢ 7= (@ Xp, V), x £

and(¥ ={(i,Xp,2)}uv
or U={=(i,Xp, 2)}ur)
T otherwise

wherer’ = pn(7).

For example, consider the program fragment

X =g
foreach i in d/X {
if (i/B) {
if (k/IC) {
X < ilA;

11}

13

Here, we would infex : (i, 4, {(i, B, @), (k, C, @)}) to indicate thak accumulates all
the elements i/ X that have & child, or nothing at all ifk/C' is empty. We flatten
this as follows:
flatten; (i, A, {(i. B,), (k,C,2)})) = foldi(A, {(i, B,), (k. C, 2)})
= foldj(¢[B] /A, {(k,C,2)})
= (Ia E[B /A7 {(kv C, @)})
The resultant type expresses our intuitive earlier notosmally. This is not quite

the type we ultimately want for yet, though — to get that type, we need to ‘promote’
this type to

x: (d, X/e[B]/A,{(k,C,2)}) = (d, X[B]/A, {(k,C; 2)})

We describe our notion of ‘promotion’ below, though we firsed a helper func-
tion rec that distinguishes variables that are potential accurorgdt.e., that reference
themselves in their result type) from others:

Definition 7.

true 7= (z,¢,9)
true T=T1®DT

andrec(z, ;) = true, for somei € {1,2}
false otherwise

rec(z,7) =

Now we are ready to formalize loop body treatment and ‘praomit
Definition 8. Letr = (¢, Xp, ¥). Then

promoter , i(x,7,7") =

I(x) 7 = (2,¢,9)
(7 o Xp')[promoter (L, true,)] 7' = (i, Xp', V')
andr = true
1) T =0
promoter , j(x,7,71) T =T1®1

@promoter , j(x, 7, T2)
(d, Xp', promoter. (L, true, ¥’)) = (d, Xp', ¥)
andd € Doc
¢ otherwise

where L is a fresh identifier (i.e., an identifier that is not part of forogram), and

T[{wlaz/]% .. awn}] = T[wl]W% cee ﬂﬁn]

We extend the definition gfromote to environments as follows:

promoter . (I")Fz:7" <= T'Fax:7
andpromoter. . ;(z,rec(z, 7’)7’") = 7"

14

promote permits assignments within the loop body. Since these @msggts are
only executed if the loop body is executed at least once, wst tneiat the resulting
environment as we would treat the “then” branch of a condélo For this purpose,
we recycle our functiomerge that we previously defined for handling conditionals.
Putting everything together, we arrive at our typing rule:

FEXP:T To{S}Ts I'; = flatten(T';)
I' { foreachiin XP { S } } merge(promoter . (I'y),I", 7)

To see that this rule is correct, consider the following epkas:

Example 1 (Simple loop accumulation).
a = Jg;
foreach i in d/Y {
a<i;
}
IH{a — (a692)®(62)}

flatten is a no-op here, sb; = I';. promote then mapsa to the entire iteration space
(in union with its previous contents). Aftererge, we arrive at the type

a:(d,Y {(dY o)} oo

While this type is correct, it is unnecessarily complex. Weréfore introduce two
more rewriting rules based on semantic equivalence:

TOO =T (empty
(X, Xp, (x, Xp, ¥)) = (x, Xp, V) (selfdep
We then find the desired type judgment

a:(d,Y,o)

Example 2 (Nested loop accumulation).

x = elB;
foreach i in d/A {
foreach j in i/|/B {
X< j;
}
}
First consider the inner loop:

Di={x — (X692)®(,692)}

analogously to our previous example. This type we map o (i, | /B, @), where
x : 7 held before the inner loop. To determine what this, now consider the outer

15

loop: In the outer loop, we (at this point) are using andl’y - = : (x,€,). Thus,
the outer loop yields

Ii={x — (xe2)®(l /B o)}
flatten is again a no-op, angtomote maps the type of to
x:7'®(d,A/ | /B,2)

where7’ is the type we have fox prior to the outer loop body. This type (8, B, @),
so the final type judgmentis

x:(e,B,)® (d,A/ | /B,o)
as we expected.

4.3. Correctness

As our examples illustrate, our algorithm is precise in mantgresting cases. It
is also sound, as we show in Appendi@.4 Our proof is mostly technical. We first
show that our algorithm is sound in the absence of loops. Wtfinseful to introduce
arelation(C) that expresses that a type approximates anothér<" iff [r]p = £ or
[71p = [7']p- We extend this definition to environments.

Next, we introduce a notion of substitution via a functsubst (Section10.3),
wherein we substitute environments into other environseiith holes derived from
‘abstract environmentd”y,. These abstract environments are precisely the specially
tagged environments we used in Sectdoh

In Theoreml we then show the following: LeF{S}I”, andT'4({S}I';. Then
subst(T',T'y) C T, wheresubst (T, T';) substitutes mappings frominto all ‘holes’ in
I" left over from the initial abstract environmelng.

This property is then fundamental in our proof for correst the presence of
loops: we show that all types that our algorithm does not rogpatre either preserved
or accumulate inductively, resulting in Lemrié. Theoren® then collects our results
and proves correctness.

4.4. Algorithmic complexity

The algorithm for assigning types to variables accordinthétyping rules spec-
ified in Sections4.1 and4.2 is fairly straightforward. It starts with an empty envi-
ronment,I';, and applies the typing rules to each statement to prodecesgulting
environment. When a loop is encountered, the algorithmiepthe rules to the ab-
stract environment, and then promotes the results. Eatdnstat is visited only once.

The complexity of the algorithm depends on efficient mecsrasifor simplifying
union types, for detecting the equivalence of types, andffisiemt representation of
sets.

Independently of those factors, the number of operationtypes is linear in the
size of the program. The size of the predicate set is alsaliwéh respect to program
size. Union types make the worst-case complexity expoalkestnce they can poten-
tially double in length after each conditional. However piractice the length has a

16

much lower bound, as shown ii][We can perform simplifications that in practice re-
duce the length of union types. Further, we can guaranteearlbound on the length
of union types by selecting a size limit and setting a typé ¥chenever that bound is
reached.

There are several techniques for determining the equigale@f XPath expres-
sions [L2, 5]. Our analysis is orthogonal to the equivalence test usedappropri-
ate test could be chosen depending on the fragment of XPpffosied. Some XPath
equivalence tests are non-linear in the length of the typespared. In our algorithm,
we use a straightforward technigue based on matching thadimstructure of types.
Two types(x, Xp,, ¥1) and (x, Xp,, U2) are equivalent ifXp, is equivalent taXp,
and one can match each elemen¥inwith an element inls. Xp, andXp, are equiv-
alent if the tree representations &p,; and Xp, are identical modulo commutativity
of predicates, that is;[r1][72] is equivalentr[rz][m1]. While this syntactic matching
is incomplete, it allows us in practice to detect equivaéenin the presence of data
value comparisongount, and other functions that more complete techniques do not
handle p]. Our technique for determining XPath equivalence is lirirahe length of
the types compared.

5. Transformations

The analysis described in Sectidrmomputes a symbolic representation of all pos-
sible values assumed by each XML expression or variablesipthgram. This section
describes how this symbolic representation is used to aggaiprograms. We describe
three transformations enabled by our analysis. The figifismon subexpression elim-
ination [8], which replaces an XPath expression by a previously coatprdsult. The
secondXPath extractiorallows for the treatment of loops as XPath expressions;avhil
it is not an optimization in itself, it enables other optimtiibns. The thirdcommon
traversal eliminationis an optimization across multiple queries; if two XPathleva
uations traverse a common set of nodes (though they migintretifferent results),
the XPath engine could optimize the computation by evatgatioth queries in paral-
lel. We describe these transformations below. Subseé&tibdiscusses how the above
transformations are applied in concert.

5.1. Common Subexpression Elimination (CSE)

Common subexpression elimination (C$&p)laces an XPath expression by a pre-
viously computed result. Common subexpression eliminatias been extensively
covered in the literature8]. The symbolic representation resulting from our analysis
provides a basis for applying traditional CSE algorithms<iath expressions. For
example, given a statement < x/ XP”, if the analysis were to discover that the type
of some variable after the statement is equivalent to thatypthen we could replace
the statement withy' = z”.

We now give a general description of the CSE transformation:

Il 3z:z2=e¢ i /] Jz:z=e

y =e€ y =2z

17

For CSE our analysis must determine that) andI'(y) map to equivalent types,
i.e.,I'(z) = 7 andl'(y) = 7/ andr = 7'. z is anavailable expressioat the point of
the assignmenttoy.

Consider the following transformation example, which camels XPath extraction
with CSE.

Il 3z:z=¢e/Xp,; Il 3z:z=e/Xp,;
foreach i in e { y = z;
Stmt1 ; j foreach i in e {
y < ilXpq; Stmty; // accumulate statement
Stmts ; Stmto; [/ removed from loop body
} }

Before we can perform CSE in this example, we must extractRatiXexpression
out of theforeach loop. We describe this transformation in SectoA

5.2. XPath Extraction

This transformation extracts XPath expressions out of$adbat accumulate values.
It consists of two stepdoop splittingandXPath conversionlf, using algorithms such
as loop reordering analysi$3], we can detect that splitting a loop preserves semantics,
then we can isolate accumulate operations by splittingdbe.| The essence of the
transformation can be described through the following gxam

/1 Loop 1
foreach i in x/XP { foreach i in x/XP {

y =i/, i } y <i/...;

Stmt foreach i in x/XP {
Stmt // y <« ...removed

}

The XPath conversion step replaces loops of the form of LoiogHe previous ex-
ample with the statemeny“= x/XP/..."”. Such a transformation may enable further
optimizations such as CSE and common traversal elimination

In certain cases some of the code preceding the accumudédenstnt needs to be
duplicated becausetmtincludes a read of i. For example:

foreach i in z/XP; {

j = iIXPy;
foreach i in z/XP; { y < il...
j = iIXPa; }
y < il — foreach i in @/XP; {
Stmit(j); j = iIXPgy;
} Stmt(j); // accumulate statement

/1 removed from loop body

}

In the transformation example in Sectibri, we need loop splitting prior to loop
to XPath conversion. In the transformation example in $adi.2, loop splitting is
unnecessary.

We now give a general description of the XPath conversiarsfaamation:

18

foreach i in z/Xp {
y < il..; — y = alXpl.. .
}

5.3. Common Traversal Elimination

Consider two XPath expressions over the same document velraieation would
traverse the same set of nodes. The analysis results dedanilsectiord implicitly
encode the sets of nodes traversed by XPath evaluationsm@Gortraversal elimina-
tion, ortupling, merges XPath expressions that traverse the same set of Xddésn
Intuitively, the tupling optimization represents simulégaus computation of multiple
results over the same data set. For example, consider twehXd@x@ressions =
x/|/BI]IC andb = x/|/B/|/D. The tupling transformation takes advantage of the fact
that the evaluation of both XPath expressions would visittchildren ofx and all the
children of those nodes. Rather than evaluating the twoX@gbressions separately,
one could compute the two solutions in parallel. To supgostoptimization, we add
a new operator®” to our XPath syntax. In our XPath engine, the two XPath egpre
sions would be represented ®4/B/|/(C ® D). The denotation of thed operator,
[® 7'](N) is defined to be the tupldr](N), [7'](N)). Consider a statement of the
formy = x/XP,/XP,. If some variable at that statement has type Xp,/Xp;, ¥),
we identify the definition ofz to see if the computation af andy are amenable to
common traversal elimination. The transformation detettsther the computation of
y can be safely hoisted to the point wheris computed.

For example, consider the following instance of the trarmfdion:

Il Je:x=e€/Xpy; /1 3e:{z,y) =e/(Xp; ® Xpy);
foreach i in e/Xp, { /1lety =e/Xp,;
Stmty; i foreach i in y {
y < i; Stmt1; Il y< ... removed
Stmts Stmis ;
} }

In this example, we first perform XPath extraction to movedhsignment ty out of
the loop. We can then tuple the computatiox@ndy. If I'(z) = (d, Xp,/Xp}, ¥1)
andT'(y) = (d, Xp,/Xp,, ¥y), our implementation searches for an expressipn
wheree is a “common prefix” ok and y, i.e., fol' - e : 7/, where

T/ = (depla \Ill) = (da XPQa \112)

The implicit encoding of traversals in the analysis respltsvides the information
needed to find a common traversal foandy. More elaborate matching is possible,
but would require a more complex transformation than thérigmlescribed above.

We now give a general description of the tupling transforamat

/I F e : .
Y = elxp,: — /3

y = elXp, (x,y) = el(Xp; @ Xp)

For tupling, our analysis must determine:

[(z) =01

19

['(y) = o2

3 (o}, db) such thaty = 0}/ Xp,, 02 = 04/ Xp,, 0} = o, andI e: T'(e) = o}

The main challenge for our analysis then is to find a matchingheree is a
“common prefix” of x and y. The complexity of this task largelgpends on the power
of our equivalence relatiofe).

5.4. Bringing it all together

Our general transformational approach is then the follgwin

Given the results of our analysis, we find all pairs of vaiatthat are associated
with the same symbolic value at a program point. For each paatof variables, we
perform the CSE transformation. If the value that is comgueéer is a result of loop
accumulation, we precede CSE by XPath extraction.

After the CSE phase, we find all pairs of variables whose amalesults have a
common prefix. For each such pair of variables, we perfornpkng transformation.
If either value is a result of loop accumulation, we precegiding by XPath extraction.

All transformations are subject to the constraints descriim the preceding sec-
tions. If we cannot perform XPath extraction (due to depecass, for example), we
cannot perform the subsequent transformation (CSE ormtgpbn that pair of vari-
ables.

6. Extensions for Generality

For simplicity, we have focused on a core fragment of an XMisdd language.
Here we discuss the extension of our analysis to the richef senstructs available in
an imperative language such as XJ. We have implemented #igsanin the context
of a larger subset of XJ than the core language. Our impleatientof the analysis
handles more general control constructs, exgi,t ch andwhi | e.

The interaction between XML values and non-XML values, ithbour core lan-
guage and XJ, occurs in a constrained manner, namely, neseare allowed from
objects of Java types to objects of XML types, but not in theeotirection. For exam-
ple, XML values can be stored in fields of Java objects. Thiadjtional alias/points-to
analyses or value numbering algorithms could be appliedgambn-XML (Java) sub-
set of the imperative language prior to the execution of eathyssis. Our analysis can
then use the results of these pre-pass analyses as inpugsimplemented analysis
integrates the computation of single-level Java referafiasing.

To extend our analysis to handle updates to XML values, we taxdetect all
values that are or could be modified by each update statenhemtiementing such
a strategy requires two parts: (1) a general update mechahet describes what it
means for one type to be substituted by another, and (2)einerrules that tell us for
each update primitive what type they should substitute bgtwther type.

First, consider the general update mechanism. For all mssigts of one set of
values of typer, to a storage location represented by a typewe must identify all
type assignments : 7 in the current environment and determine whethewerlaps
with 74 (for this we can use existing algorithm#&]). If 7 andr,; do not overlap, the
assignment does not affext If = and 7, partially overlap or could overlap, we set

20

X : & If 7 andry are equal and nat, we setx : 7,. Note that ifr; = &, we must map
the entire environment to since any value may be affected.

Second, consider update primitives in general. Each updptaces one set of val-
ues (of typers) by another (of typey). Thus, all we need are inference rules for each
update primitive that uses the above mechanism and cohstrandr,; accordingly.

Supporting method calls would be relatively straightfordven the absence of im-
perative updates. A method may act as a query function antigincase) will return
the union of the types that all of its return statements retdior recursive calls, the
matter is more complex and may require handling similar tp&— though we can
always default tg. The only complication here arises when we accumulate andbr
parameters, but we can initially approximate this by sgtthreir types tct after the
call.

Adding both methods and imperative updates to our core kaggtas a more pro-
found impact. Since we assume reference semantics, updatedfect the entire heap
and must therefore be considered globally. We can accomiplis either by employ-
ing a context-sensitive analysis, or by computing a rewngoping for each function
that directly or indirectly updates XML values. Each reenhapping then updates
our environment at the corresponding method call, therequiring only one analysis
pass per method (as for our loops). We can use analogousdeelsrio provide more
precise typing judgments for formal parameters.

The type system we described is mostly orthogonal to therfead of XPath used
- the framework depends essentially on an efficient algorifibr detecting the equiva-
lence of XPath expressions. Recently, Genetes. [5] have presented an engine that
in practice can detect equivalences between XPath expressificiently. We could
adapt our analysis to support a larger fragment by takingaighge of their equiv-
alence checker. XML Schema information can be incorporatedour analysis by
performing a preprocessing pass, where XPath expresgiemewritten using schema
information. For examplga, |t /A, ¥) could be rewritten intda, | /B/ | /A, ¥)
if appropriate schema information states tha¢lements only occur as children &f
elements.

7. Experiments

The implementation of type assignment used for our experigie based on a type
assignment algorithm described &],[which differs in some details from the type as-
signment algorithm described in Sectiér. The algorithm described in this paper is
more efficient than the one described 2).[The algorithm in this paper is also more
precise in terms of handling a number of cases, such as lodggbl@ accumulation
on nonempty initial variables, that were mapped tor even undefined in2]. How-
ever, the 2] algorithm does compute the correct type in the presencdad@carried
dependencelf] on assignment to a variable, whereas the algorithm fortedla Sec-
tion 4.4 does not. Detecting this case requires at least two passeshe/ioop body
(since the type of that variable might be different on theosécpass). The algorithm
in this paper is a one-pass solution, and misses this casepbid readily be modified
to handle it without an additional pass. The precision ofttteealgorithms is identical

21

XLing 34 :Uniontwo sets of nodes: books authored by Anders and/erPet
XLing 35 :Intersect two sets of nodes: books that are common for both
authors.
XLing 36 :All nodes in first set except the nodes in the second set: $pok
that are authored by one without other as co-author.
XLing 38 :Check if two sets of nodes are equal: did the two authors|co-
author all of their the books?
XMark Q7 :How many pieces of prose are in the auction database?
XMark Q20: Group customers by their income and output the cardinafity
each group.
XMark Q3 : Return the IDs of all open auctions whose current increase |
least twice as high as the initial increase.

Figure 9: Benchmark descriptions.

with respect to the benchmarks used in this section, andejodiiferences are not
relevant to the measurements given here.

As discussed in Sectidd) our implementation is a fuller subset of XJ than our core
language, but this difference too is not relevant to our mesaments.

We compare the execution times achieved by code emitted byAXIL back-
end [L5 with and without the transformations described in the papke benchmarks
for our experiments are based on queries drawn from the XMadk Benchmark
project [L6] and the XLing B, 11] 101 samples. We selected queries that have poten-
tial for significant redundancy in terms of the computatiéiXBath expressions or of
the traversal of XPath nodes. The speedups obtained dopresent average expected
speedups for the full XMark or XLing benchmark suites. Ferflthey do not indicate
expected speedups for a full application.

In addition to the type assignment algorithm, our compitepliements the tupling
optimization from Sectio.

We provide the performance comparisons for the tuplingwigttion on XLing34,
XLing35, XLinq36, XLing38 (from the XLing samples) and XMdp7 and XMarkQ20
(from the XMark benchmark suit&)

We ran our experiments on the data sets provided by the XMamkhmarks and
the XLing samples. We measured the execution times with atitbut the tupling
optimization on an IBM Intellistation with 3.0 GHz processmd 3GB of memory,
running the IBM J9 VM 1.5.0 on top of a GNU/Linux 2.6.15-28 ®m. We ran each
query 10 times, discarding the first run and picking the medésult for each query.
Before measuring, we removed all text output from the bersrked code. Our results
are summarized in Table The results of the tupling optimization are shown in the
column “Tupling”. For the queries testing tupling, the oduction of tupling produces
an improvement of 20.5% to 47.5%.

20ur implementations of the benchmarks are available at
http://wwe pl an. cs. col or ado. edu/ crei chen/ xj /.

22

Table 1: Performance results, in microseconds, medianf@utonsecutive executions.

| Benchmark | Unopt | Tupling |
XLinq34 4181 | 2195/47.5%
XLing35 3282 | 2609/20.5%
XLinq36 3794 | 2297/39.5%
XLing38 2581 | 1898/26.5%
XMark7 16545| 11749/ 29.0%
XMark20 1235 873/29.3%

We implemented the CSE optimizations by hand using our aighgsults. We
provide results for XMarkQ3 and XMarkQ20. We manually maatifXMark20.x]
into XMark20opt.xj eliminating the redundant traversal in the same way théntp
optimization did, and applying manual CSE to an XPath exgioes XMark3opt.xjis
a manual modification ckMark3.xjthat eliminates the redundant computation of two
XPath expressions. The improvements on other applicati@ifhave the same pattern
is similar. XMark20opt.xjachieves a 50.04% reduction in the runtimexéfiark20.xj,
while the tupling optimization alone achieves a 29.3% réiduc This difference is due
to the hand-coding of XPath expression CSKimark20opt.xjXMark3opt.xjachieves
an 9.4% reduction in runtime with respectt®ark3.xjby eliminating the redundant
computation of two XPath expressions.

8. Related Work

The work closest to ours is that of XAc®]| which defines a static analysis for
typechecking XML processing programs, where types are teseerify statically that
constructed XML data satisfy a specified schema. Their aisatpmputes a summary
graph for every XML variable and expression in the programis i may analysis,
computing all XML templates that may occur in some programceion. Our anal-
ysis, in detecting equivalences of values of variables aqiessions, is of necessity
amustanalysis, that is, we compute the values to which an XML \deianust refer
under all program executions. Secondly, in our languag@ XQuery, XJ, and the
XPath 1.0 standard, and unlike XAct, XML values have idgntih other words, two
nodes are not equivalent unless they refer tcstiraenode in the same tree in memory.
This distinction results in a different flavor to the anadyand the values computed.

The problem studied in this paper is similar to the infereoceelational queries
and optimizations from imperative programs. For examptuhien and Dewitt10]
analyze database programming languages to detect whettieizations such as re-
ordering loops can improve performance. Recently, Wiedemmand Cook studied the
inference of queries in a language with orthogonal perst&t§L8]. The motivation in
this paper is similar — understanding accesses to a diffelea model in the scope of
an imperative language. We, however, focus on the XML datdah@nd the XPath
querying language, with the incident challenges thesebrin

Geneveet al. have developed a framework for analyzing XPath expresgioitis
or without schema information). They provide a uniform esgEntation capable of

23

answering questions such as equivalence, containmensadisfiability of XPath ex-
pressions. Our types fit well into their framework, and it \ebbe interesting to use
their engine as the underlying basis of our analysis.

The problem we study in this paper is closely related to thaatme numberingd,
8], which attempts to discovers those expressions that arbréed equivalenti.e.,
use the same operator applied to equivalent operands, wheoperators are treated
as uninterpreted functions. In our context, however, itadsassary to take advantage
of known algorithms for detecting equivalences of XPathregpions, and not treat
them as uninterpreted functions. Moreover, we wished todbeta deduce the values
computed by loops in the same framework.

Steensgardl[7] presents an interprocedural flow-insensitive pointsrtalgsis for
a small imperative pointer language, based on type inferemthods. He uses types
to model how storage is used in a program at runtime, whenadyqles specify
when a program is well-typed. In some sense, the problemeaddd in this paper
can be considered a points-to analysis problem. We wishrieedgome notion of the
relationships between nodes in a tree when the tree is attessg complex “pointer”
expressions such as XPath expressions.

9. Conclusions

In this paper, we have studied the analysis of embedded Xfeatties in an imper-
ative language. We have described a flow-sensitive typemsystat takes into account
the equivalence properties of XPath expressions and timadeict when a loop pro-
duces values equivalent to XPath expressions. While we imaiated this analysis
using the example of redundant computation removal, su@mnalysis is essential for
many purposes — for example, if we can infer that the valuespeded by a loop
are equivalent to an XPath expression, then, in certainigistances we can replace a
loop with a direct invocation to an XPath engine that coulglement the query more
efficiently (in a sense, performing strength reduction).

An interesting area of future work is to generalize the asialyo other imperative
languages that support XML queries. Languages to considatdanclude impera-
tive derivatives of XQuery, such as XQuery#.[One could also consider runtime
APIs such as DOM, if the compiler detects invocations of XRatpressions on DOM
objects as special operations.

Acknowledgements
We would like to thank Kris Rose, John Fields, and the anonysriaBPL 2007
and ISJ reviewers for their valuable insights and feedback.

References

[1] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Bitg equality of
variables in programs. IRroceedings of the 15th Symposium on Principles of
Programming Languagepages 1-11, January 1988.

24

[2] Michael G. Burke, Igor Peshansky, Mukund Raghavacheard Christoph Re-
ichenbach. Analysis of Imperative XML Programs. Database Programming
Languages, 11th International Symposium, DBPL 2@&¥ptember 2007.

[3] Charlie Calvert. Ling samples update.
http://bl ogs. msdn. conml charlie/ archive/2007/03/ 04/ sanpl es-
updat e. aspx, 2007.

[4] Don Chamberlin, Michael Carey, Daniela Florescu, Ddn#&ossman, and
Jonathan Robie. XQueryP: Programming with XQueryXINE-P, 20606.

[5] Pierre Geneves, Nabil Layaida, and Alan Schmitt. Edfitistatic analysis of
XML paths and types. IfConference on Programming Language Design and
ImplementationJune 2007.

[6] Matthew Harren, Mukund Raghavachari, Oded Shmueli,hd& Burke, Rajesh
Bordawekar, Igor Pechtchanski, and Vivek Sarkar. XJ: Ratihg XML pro-
cessing in Java. IfProceedings of World Wide Web (WWWages 278-287,
May 2005.

[7] P. C. Kanellakis and J. C. Mitchell. Polymorphic unificet and ml typing. In
POPL '89: Proceedings of the 16th ACM SIGPLAN-SIGACT syiaposn Prin-
ciples of programming languagepages 105-115, New York, NY, USA, 1989.
ACM.

[8] Gary A. Kildall. A unified approach to global program apization. InPro-
ceedings of the 1st Symposium on Principles of Programmémgllagespages
194-206, 1973.

[9] Christian Kirkegaard, Anders Mgller, and Michael Schiwbach. Static analysis
of XML transformations in JavalEEE Transactions on Software Engineerjng
30(3):181-192, 2004.

[10] Daniel F. Lieuwen and David J. DeWitt. Optimizing loopsdatabase program-
ming languages. IDBPL, pages 287-305, 1991.

[11] Erik Meijer and Brian Beckman. XLing: XML Programmingefactored (The
Return of the Monoids). IXML 2005 Proceeding2005.

[12] Gerome Miklau and Dan Suciu. Containment and equivaddar a fragment of
XPath.J. ACM 51(1):2-45, 2004.

[13] Soo-Mook Moon and Kemal Ebcioglu. Parallelizing nanmerical code with
selective scheduling and software pipelinidA@€M Transactions on Programming
Languages and Systejmri®(6):853—898, November 1997.

[14] Mukund Raghavachari and Oded Shmueli. Conflicting XMidates. InPro-
ceedings of the 10th International Conference on ExtenBiatabase Technol-
ogy, volume 3896 of NCS Springer-Verlag, March 2006.

25

[15] Christoph Reichenbach, Michael Burke, Igor Peshangkikund Raghavachari,
and Rajesh Bordawekar. AXIL: An XPath Intermediate LangudBM Research
Report RC24075, 2006.

[16] A. Schmidt, F. Waas, M. Kersten, M. Carey, |. Manolesand R. Busse. Xmark:
A benchmark for XML data management. Bioceedings of the 28th Interna-
tional Conference on Very Large Databases (VLD#ges 974—-985, 2002.

[17] Bjarne Steensgaard. Points-to analysis in almoshlitigne. InProceedings
of the 23rd Symposium on Principles of Programming Langsaugges 32-41,
1996.

[18] Benjamin A. Wiedermann and William R. Cook. Extractiggeries by static
analysis of transparent persistence. Pimceedings of the 34th Symposium on
Principles of Programming Languageknuary 2007.

[19] Michael Wolfe.High Performance Compilers For Parallel Computinggddison-
Wesley Publishing Co., 1996.

[20] World Wide Web ConsortiumXML Path Language (XPath) Version 11999.
[21] World Wide Web ConsortiumDocument Object Model Level 2 Co2000.

10. Appendix

We now show that our type analysis results (Fig8randforeach rule in Sec-
tion 4.2) match the results of our evaluation rules (Figdje For our proof, we are
forced to constrain our equivalence relatipa) to ensure that it behaves correctly
(Definition 18) and does not artificially discriminate simple types whecsit see the
equivalence between more complex types of the same steu@efinition17).

We separate our proof into two parts: First, we introducécqa@®perties for stores
and environments (SectidiD.1), then we use these definitions to show soundness in
programs that do not contain loops (Sectigh?).

For the second part, we begin by introducing an apparatusttertdeal with loop
bodies. Specifically, we introduce a notionafbstitution implicit in our earlier de-
scription ofpromote andI'y, and show several properties of this notion, most promi-
nently a substitution theorem (Secti@6.3. With the substitution theorem, we then
extend our earlier proof to include loops (Sectidh4).

10.1. Stores and Environments

Definition 9. A storec is initial iff for all « ¢ Doc, o(z) = @. An environment' is
initial iff forall z ¢ Do, 'z :{orTl' o : @.

Definition 10. A type 7 syntactically contains a type (a variablev) iff

1. 7 =7 (r = (v, Xp, V) for someXp, ¥), or
2. 7 = 11 @ 7 andr; or 7, syntactically contains’ (or v), or

26

3. 7= (x, Xp, ¥) and, for some” or —7" in ¥, 7" syntactically contains’ (or v).

An environment syntactically containg iff, for somez, I'(x) syntactically con-
tainsy.

Definition 11. A type or environment isoop-dependeniff it syntactically contains a
variablei € Index

Lemma 2. For all S withT'{S}I"”, I" is loop-dependent only If is loop-dependent.

Proof. Proof by structural induction on program structure. Theyamleresting case is
that of loops, which both introduce and (yeomote) eliminatelndexvariables (and,
thereby, loop dependence). Syntacticallypeeach loop with index variable intro-
ducesi. All types from the loop body are filtered using thi@mote function. Assume
that 7 may syntactically contain the loop variable We now inductively show that
promote(7) eliminates such loop variables.

The cases = @ andr = £ are trivial. 7 = 7 @ 7> follows from the induction
hypothesis. The only interesting case thefvisXp, U). If v # 4, the result is trivially
not loop dependent (sindlatten eliminates alli in ¥). If v = 4, then we eliminate
loop dependence locally (and again have o).

We must further consider our set of rewriting rules (listed. ein Theorem3),
though it is easy to see that those never introduce any ngsdependences. O

We can now see the following:
Corollary 1. LetT be initial. Then for allS with T'{S}I”, I is not loop dependent.

Before proceeding to consistency, a notion we previous$cdeed in Sectior3,
we define a more basic notion:

Definition 12. A type 7 describes a value € ¥, notationv :: 7, iff v = [7]p or

T=¢&.

We define consistency as pointwise description, mirroring earlier definition
from Section3:

Definition 13. We say that a store and an environmerit are consisteniff, for all
x:7el, ox):T.

10.2. Correctness without Loops

For exposition, we again begin with a discussion that onhsaers programs with-
outloops. Section0.4then extends our discussion to prove that our treatmenbpslo
is also correct.

Before we can move on to the correctness proof, we requireadl set of auxiliary
lemmata:

27

Lemma 3. For all Xp, the functionXp] : P(N) — N is (a) a homomorphism, i.e.,
[Xp](A) U[Xp](B) = [Xp](A & B)
and (b) has a fixpoint ap, i.e.,
[Xpl(2) = 2
Proof. Straightforward (see Figui®. O
Lemma 4. For all storesD the function]—]p : 7 — P(N) is a homomorphism, i.e.,

[rlp Ur]p = [n &)b

Proof. The proof follows from the definition df—] 5. Note the special-case treatment
of &, which yields¢ if either case ig. O

We now show soundness in loop-free programs, first by corisgiXPath evalua-
tion (Lemmabs), then by considering arbitrary expressions (Lentijand finally by
considering all non-loop statements (Lemm)a

Lemma 5 (XPath Selection Soundnesd)et N :: 7, and Xp one of our XPath-like
expressions (Figurg). Then[Xp[(N) :: 7 o Xp.

Proof. We show the property by structural induction over the stiebfr. If 7 = &,
the statement holds trivially. Otherwise, we haVe= [7]p.

Empty type..With 7 = &, N = &, so[Xp](N) = @ = [t o Xp]p.

Triple type.. Assumer = (z, Xp’,). If satisfied(¥) is nottrue, then by definition of
[—] for triple types and our induction hypothesl$,= ¢ or N = & and the property
trivially holds. Otherwise, we know

[Xp'(o(x)) = N
and can shovfr o Xp]p =
[(z, Xp'/ Xp, ¥)]p = [Xp'/ Xp](o(x))
= [Xp]([Xp' (o (2)))
= [Xp](N)
Union type.. 7 = 71 & 7». Thus we know that
N = [[Tl]]D U [[TQHD

We can therefore findv; (i € {1,2}) such thatV; = [r;]p andN = N; U N». By
Lemmas3, it is now sufficient to show

[Xp](N:) = [7i o Xplp
but this we know from the induction hypothesis. O

Lemma 6 (Expression Typing Soundnesd)et o be consistent witl'. Then for all
expressions, with (e,o) = N andT I e : 7 the propertyN :: 7 holds.

Proof. By induction.

28

Empty set..(@,0) E @,andl' + @ : @, with [9]p = @.

Variable.. (z,0) | o(x), andT’ z : 7. Sinceo, T are consistenty(z) :: 7 by
definition.

XPath selection..(z/Xp, o) E [Xp](c(z)) where(z,o) E N. Inthe type system,
'kxz/Xp:70Xp,wherel' -z : 7.
First observe thaWV :: 7. Then[Xp] (V) :: 7 o Xp follows directly from Lemméb.
O

Lemma 7 (Partial Statement Typing Soundneskgt S be a program such that is
loop-free (i.e.,S does not contain the keywoforeach), and leto be a store and” an
environment such that andI" are consistent. Now l€tS, o) || o’ andT'{S}I". Then
¢’ andI” are also consistent.

Proof. By structural induction. First observe that we explicitkckide the case of
loops. This leaves us with five cases to consider:

Skip.. (skip, o) | o andT’{skip}T’, which trivially preserves consistency.

Composition..(S;S’,0) | ¢”, where(S,o) | ¢ and(S’',¢’) | o”. Similarly,
{s;s’}1” wherel'{S}I” andI"{S’}I"”. Using our induction hypothesis; is con-
sistent withl", and therefore’” with T"”.

Assignments.{x = Expr, o) |} o[z — N] where(Expr,o) = N. In the type system,
I'{x = Expr}I'[z — 7], wherel - Expr: 7. By Lemma6, N :: 7.

Accumulation..(x < Expr,o) || o[z — o(z) U N] where(Expr,c) = N. Inthe
type systeml'{x < Expr}T'[z — 7’ & 7|, wherel" - Expr: 7 andl' F = : 7/. Again
we know thatV :: 7 from Lemma6, and we knowr(x) :: 7’ by the assumption that
andT are consistent. With Lemm& we then know thatr(z) UN :: 7/ @ 7.

Conditionals.. The evaluation rules for conditional statements handledases. We
first consider the “else” branch case{#,, o) || ¢” and(Expr,c) = @, then

(if (Expr) then S, else Ss, o) || o”
Meanwhile, our typing rules specify, wifh - Expr: 7, I'{S; }I” andT'{ S2}T"”,
I'{if (Expr) then S; else Sy }(merge(I’, T 7))

By Lemma6, we know thatr :: 7. By our induction assumption, we further know that
o andI'” are consistent. We must now show thatge(I",I'"", 7) = I's is consistent
with ¢”.

Forr = ¢, this is trivial, sincd; is pointwise either equal tB’ or &.

Forr = @, first note thainerge preserves entries i’ andI'” if they are equiva-
lent (thereby preserving their semantics). For amyn whichI” andI"” diverge, we
construct the type

7 = (z)[r] & T"(2)[~7]

29

We show thatr(x) :: 7, as follows: First, note thall” (x)[r]]p € {&, 2}, since we
know thate :: 7. If [TV (z)[7]]p = &, then[r,]p = £ (due to the semantics ¢f) on
£). Otherwise

[r2]p = [(@)[7]]p U [M"(2)[~7]] o
=2 U (@)[~llo

All that remains now is to shofT'’(x)] = [T (x)[—7]], with T # £. This we
show by structural induction ovét’(x):

If I (2) = €, thenl” (z)[~7] = €

If I (2) = @, thenI" (z)[~7] = @

If T (z) = 71 & 72, we have identical semantics by the induction hypothedls an
by Lemma4.

o If I'(z) = (x, Xp, V), consider
[T (@)[=7]lp = [(2, Xp, ¥ U{~7})]p = [(z, Xp, V)] p
by the definition ofatisfied, since[—7] # &.

The “then” branch case (where¢ {@, £}) is analogous. O

10.3. Abstract Environments and Substitution

Definition 14. An environment is abstractiff it syntactically contains atypér, Xp, ¥)
with z in Indexu Id. Whenevell is not abstract, theh is basic

Corollary 2. Any initial environment is basic.

Next we define a special null environmdry whose purpose it is to help us in
handling loops. We do not use this environment outside gf kalysis.

Definition 15. The abstrachull-environment’'; is
To={j— (j,e,9)|j € Indexu Id}
For abstract environments, we describe a notion of sukistitu

Definition 16. We define the substitution of an environmé&hinto a typer, denoted
subst(T", 7), as follows:

substv(Xp, subst(T", ¥), I'(x)) T = (z,Xp, V), if z € IdU Index

(d, Xp,subst(T", ¥)) 7= (d, Xp,¥), if d € Doc
subst(I', 7) = ¢ subst(I", 1) @ subst(T", 72) T=T1 O

%] T=9

3 T=¢

30

with subst suitably extended on sets of types that may be prefixed, tand

(v, Xp'/Xp, W' UT) 7= (y,Xp, V)
substv(Xp, ¥,)

substv(Xp, ¥, 1) = @substv(Xp, U, 75) T=T1 0T
%] T=9
£ T=¢

We further extendubst to operate on environments, pointwise.

We eliminate meaningless syntactic differences introdumethe above by intro-
ducing the rewriting rules

(X, ¢/ Xp, ¥) = (X, Xp, ¥) (Xpe)
(x, (Xp/Xp")/Xp", W) <= (x, Xp/(Xp'/Xp"), ¥) (xpassof

To show the substitution theorem, we must make an assumgibioat our equiv-
alence operatof=). The assumption is that the relationrisn-discriminatingand
correct, as defined below:

Definition 17. An equivalence relatio(=) on types isnon-discriminatingff
7=7" = subst(l',7) = subst([, 1)
foranyT.

This property is a relatively weak restriction and depemisar notion of substi-
tution, which is why we could not define it earlier. In praetidt forbids non-equality
on semantically irrelevant properties such as the presefihwertain variable names or
the size of a type.

Definition 18. An equivalence relatio(=) on types iorrectiff
r=7 = [r]lp =["]b

Our first goal is thesubstitution theorefrwhich states that type inference on state-
ments starting witl", and type inference starting wifi, and followed up by sub-
stituting I via subst , give similar results in the sense that the latter is a coasiee
approximation of the former. We define

Definition 19. A type 7 approximatesa typer’, notationr C 7/, iff [r]p = £ or
[7lp = [7']p- Similarly, an environmerit approximates an environment(I" C I")
iff for eachz, I'(z) C IV (z).
Furthermore,
71 Cr 7/ < subst(l', 1) C 7/

I Cr IV < subst(',T';) C TV

Observe thafC) is transitive.

31

Lemma 8. Letl'F z : 7 andIy - x : 7. Thensubst(T', 79) = 7.

Proof. I'y - z : (X, ¢,) by definition. Assumé'(z) = (v, Xp, ¥) (the other cases
follow directly from the definition okubst). The case off € Docis straightforward.
Otherwise:

subst(T", (X, €, @)) = substv(e, &, 7)
= substv(e, &, (v, Xp, ¥))
= (v,e/Xp, V) (epsilon
= (v, Xp, ¥)

T

O

Lemma 9 (Path Appendage Substitution)et Cr 7. Then, for anyXp, 7 o Xp Cr
7' o Xp.

Proof. We use structural induction ovet.

empty set..Let 7' = &. By definition,subst(T", @) = &, and@ o Xp = & both forr
andr’. The same result applies £0

union type..Let 7’ = 1, @ 72. By translationy = subst(T", 1) & subst(T", 72), which
follows from the induction hypothesis.

triple type.. Let 7' = (y, Xp’, ¥). The case of € Docis trivial. Otherwise we must
show fromsubst (T, (y, Xp', ¥)) = 7 thatsubst(T", (y, Xp'/Xp, ¥)) = 7" o Xp. This
requires further induction, this time ovéxy). If I'(y) = @ orI'(y) = &, we are
done. Union types follow from the induction hypothesis amel definition ofsubstv.
OtherwiseI'(y) = (d, Xp", ¥’) for somed, Xp”, ¥'. Therefore

subst(T", (y, Xp’, ¥)) = substv(Xp’, subst(T, ¥), T'(y))
= (d, Xp'/Xp", V" Usubst([', ¥)) (x)

1
=T

From this, we can show

substv(Xp'/Xp, ¥,T(y)) = substv(Xp’/ Xp, subst(T, ¥), (d, Xp", ¥"))

= (d, Xp"/(Xp'/Xp), ¥ Usubst(T, ¥)) (xpassog
= (d, Xp"/Xp', ¥ Usubst(I", ¥)) o Xp (%)
=7"0Xp

O

Lemma 10(Expression Substitution)_et Expr an expressio; an environment, and
I'; andT suchthat for alle, TV 2 : 7withT'y - 2 : 7, subst(T', 1) C 7.
Now letl” - Expr: 7 andT'; F Expr: 7. Thensubst(T', 1) C 7.

32

Proof. By case distinction oveExpr. The cases is trivial, and the case of variables
holds by assumption. We only need to consider the case ofhX®t&tchment, where
Expr = x/ Xp, but this follows from Lemma@. O

In the following, we utilize another set of rewriting rules:
TEE=¢ (BY)
X, Xp,{GU¥) =& (¥E)
X Xp,{=§pU¥) = ¢ (V=)
Lemma 11. Assume types, 7. Then

1. If [7']p = &, then[r]p[r'] = ¢
2. If [7']p = @, then[7]p[r] = @
3. I [']p ¢ {¢, o}, then[r] p[r']

Proof. Straightforward. O

=[rlp

Lemma 12(Conditional Appendage Substitution)etr C 7’ andr, = 7. Then
7[n] Cr 7'[7]

and
7[~n] Er 7/[~7]]

Proof. Straightforward by LemmaZl.

O
Lemma 13. Let[r]p = [*']p and[7"]p # &.
[rl"] @ r[=m"llp = [7]p = ['lp
Proof. First, considefr]p = ¢; this case is trivial. Next, we distinguish
1. [7"]p = @. Inthis casdr[r"]]p = @ but[r[-7"]||p = [7]b-
2. [7"]p # <, [7"]p # £ This is the inverse of the above.
(]

Lemma 14 (Merge Substitution) Assume™;, Cp IV andI'{ Cr I'. Then, for all
subst(T",) C 7,

subst (T, merge(T"}, T}, 71)) C merge(I"’, T,)

Proof. We show this property by showing the computed environmeoitdywise equiv-
alent. First, observe that since we requiteto be non-discriminating (see Defini-
tion 17), we know thafl; (z) = I'{(x) impliesI’(z) = T'"(z) andI”(z) Cr T (x)
by our precondition.

OtherwiseI(z) £ I'"(x). We must then show that

33

1. T (z)[m] @ I (z)[~m] Cr IV(z)[r] @ I'(z)[—7] It is sufficient to show that

Fll (x) [Tl] Cr F/(.”L')[T] and
I} (z)[=71] Er I'(z)[-7]
which follow from Lemmal2.
2. T (z)[n] ® T (x)[-71] Cr T’(x) wherel”(z) = I''(x). If any of ry, T (),

I'Y (x) have the semantics gfaftersubst, then so has the result and we are done.
Otherwise the desired property follows from Lemfta

O
Theorem 1(Substitution) LetT'{S}I”, andT'4{S}I';. Thensubst(T',T';) C I".

Proof. Proof by structural induction oves. First, observe thaubst(I',Ty) = T" (via
extension of Lemma&, thus handlingskip). Sequencing is trivial from the induction
hypothesis. This leaves four cases: assignment and acatiomiollow directly from
Lemmalo, while conditionals follow from Lemma4.

loop.. Considerthe cas& =foreachiin Expr{ B }. LetT',{B}I'; and assume (with-
out loss of generality) that all types Ihy are predicate-normal. L&t; = flatten;(T'1).

Furthermore let
T'FExpr: 7

Ty FEXpr: =

By Lemma8, we knowry, Cr 7. We must now show, for each, r, 7/ with
IibFao:7,
promoter . i(x,7,7") Cp promoter (z,7,7")

These only differ in the indices f@omote. Thus, we only need to consider (via induc-
tion) two cases:

1. 7' = (X, ¢, o). Here we must show
Lo(z) Er I'(z)

which we know from Lemma&.0.
2. 7 = (i, Xp', ¥’) follows directly from Lemmal0and Lemmal3.

Finally, by Lemmal4,

merge(promoter, . i(I'1), T, 7o) Er merge(promoter. . i(I'1), ", 7)

34

10.4. Correctness with Loops

Definition 20. A variablez has a fixpointr in S iff with To{S*1T;, T F z : 7, for
anyk > 1, whereS! = S andS™*! = §; S™.

Definition 21. A type 7 is stableiff it falls into one of the following categories:

1. =0
2. 7 =(d, Xp, V), d € Doc, and for all7’, =7 in ¥, 7’ is stable
3. 7 =11 © 7» and7; andr, are both stable

Lemma 15. Assumd’({S}T'; andT'; -« : 7. If 7 is stablex has a fixpoint- in S.

Proof. With T';,{S}Tx.+1, we know from the substitution theorem that
subst(T'y,T'x) C D41

so it is sufficient to show thaubst(T",7) = 7. This follows from straightforward
structural induction over the structureaf O

Definition 22. A type 7 isi-stable iff one of the following cases holds:

1. 7 is stable
2. 7 =11 ® » and bothr; andr; arei-stable
3. 7= (i, Xp, ¥) and for all7’, =7" in ¥, 7’ isi-stable.

Further, a type is i,x-stable iff one of the following cases holds:

1. Tisi-stable
2. 7 =11 @ 7 and bothr; andr, arei,x-stable
3. 7=(X¢09)

Lemma 16(Statement Typing Soundnesd)et o be a store consistent wifh, and let
r{S}I" and(S, o) |} o’. Thens' is consistent with".

Proof. We follow the proof of Lemm&, except for also handling loops.
Consider the following:

e aloopS =foreachiin Expr{ B}

e atyping environment' consistent with a store,
e o' asperS, o) | o,

e I'\{S}I's, and

o I'y = flatten;(T's).

Also assumd® - Expr: 7 and (Expr,o) = N. If N is empty, therl’ ando’ are
consistent. Otherwise, |&€ = {n4,...,n;} and define
(] 0'2 =0

35

e (B,ok) | oFtlforallk e {1,...,1}

o oF =apli— {n}]

o o/ =cltli— 2]

Note that(S, o) |} ¢'. Thec* give us a means for referring to intermediate compu-
tational stages, but we do not have a typing environmentshainsistent with them.
To achieve this, we define a family of freSloc variablesl;, such thatD(I;) = {n;}
(without loss of generality) for suitablg and define

° Fg =TI
o D*{B}I*+lforallk € {1,...,1}
o T* = TX[i v (¢,)]

Observe:
1. Fork € {1,...,1},T* ando* are consistent by our induction hypothesis
2. [(I1,6,2)]pVU...U[(I1,e,9)]p =N
and, by Lemmd®, N :: 7.
To show our typing treatment of loops correct, it is thereftlyy Observation 1

above) sufficient to show
promoter . (I'y) C !

For each variable, considel’, F = : 7/ andT z : 7!, We show that

promoter . ;(x, rec(z, '), flatten;(7')) C 7'
Observe that' is i,x-stable iffflatten;(7') is i,x-stable, and thairomote maps allr’
that are not,x-stable to¢. Without loss of generality, we then only need to prove the
above property for predicate-normatstabler’. We employ structural induction over
7" = 7. If 7 is stable, we have the desired property by Leniffawith union, the
property follows from the induction hypothesis. We are thefh with the following
cases:
1. 7" = (z,¢,@). From the substitution lemma we see by straightforwarddtidn
thatr! = (z,¢, 2).
2. 7" = (i, Xp, ¥) and7’ syntactically containgx, ¢, @) (i.e.,rec(x,7’)). To sim-
plify our exposition, we consider two separate casesfor
(a) AlltypesinV¥ are stable. In that case, the substitution lemma shows s tha

inductively,
= (I, Xp,¥)®...® (I, Xp, V)

which (by Observation 2) is equivalent(eo Xp)[¥], so the desired property
follows from Lemmasl2 and9.

36

(b) Alltypesin¥ arei-stable but not all are stable. Then, without loss of gener-
ality, ¥ = {(i, Xp’, @)} U ¥’ (analogously with negation).

= (I, Xp, V' U{(I;, Xp',2)})) @ ... & (I;, Xp, V' U {(I;, Xp', @)})
which is (by Observation 2) equivalent te o [Xp'] o Xp)[¥’]; again the
desired property follows from Lemmad£ and9.

If N # @, thenI' ando’ are consistent, otherwiggomoter . ;(I'y) ando’ are
consistent. As we showed in the correctness proof for cmmdits in Lemmav, this
implies thatmerge(promoter- . ;(T'y), I, 7) ando’ are consistent. O

Typing soundness is then straightforward:

Theorem 2(Typing Soundness)Assume a prograr®, an initial stores and an initial
environment’.
Now let(P, o) || ¢/ andT'{ P}I"”. Then

1. ¢’ is consistent with”
2. I is not loop-dependent.
Proof. By Lemmal6 and Corollaryl. O
Further, all of our rewriting rules preserve semantics:

Theorem 3. The rewriting rules from Figuré® are correct.

Proof. (comn), (assog, (empty, (idem) arise trivially from the semantics of (lifted) set

union. The others follow from the definition of XPath semesitiwith (oin) following

directly from Lemmal3. We show two of the more interesting cases below:
Consider gelfdep:

(X, Xp, (X, Xp, ¥)) = (X, Xp, ¥)

We must consider three cases:

1. [(x, Xp, ¥)]p = @, but then[(x, Xp, (x, Xp, ¥))]|p = 2.

2. [(x, Xp, (x, Xp,¥))]p = £ Observe that this means that, foror -7 in ¥,
[7]1p = €. Butthen[(x, Xp, (X, Xp, ¥))]p = &.

3. [(%, Xp, (x, Xp, ¥))[p ¢ {2, &}, then[(x, Xp, (x, Xp, ¥))[p = [(X, Xp, &)]p-

Consider flat-1):
(=, Xp, {(y, Xp", V)} U W) => (2, Xp, {(y, Xp', @)} UL U T')

Again we consider three cases:
1. satisfied(¥’) = true. Then

[(z, Xp, {(y, Xp', ¥')} UO)]p = [(=, Xp, {(y, Xp',2)} U)]
[(z, Xp,{(y, Xp", @)} UV UD)]p
[

(z, Xp, {(y, Xp', @)} UL U p

2. satisfied(V) = false Then

[[(SC, Xp, {(y7 Xp/a \I]I)} U \Ij)]]D

[(z, Xp, {(y, Xp", {@})} UD)]D

[(z, Xp, {(y, Xp', {@})} UT U{2})]Dp
I((

I((

z, Xp, {(y, Xp', @)} UP U{2})]p
x, Xp, {(y, Xp', @)} UL UV)]p

3. satisfied(¥) = £. Then both expressions have the semantic ahalogously to
the previous points.

O

38

