
Analysis of Imperative XML Programs

Christoph Reichenbach1

University of Colorado at Boulder

Michael G. Burke

IBM T. J. Watson Research Center

Igor Peshansky

IBM T. J. Watson Research Center

Mukund Raghavachari

Google Inc.

Abstract

The widespread adoption of XML has led to programming languages that support XML
as a first class construct. In this paper, we present a method for analyzing and op-
timizing imperative XML processing programs. In particular, we present a program
analysis, based on a flow-sensitive type system, for detecting both redundant computa-
tions and redundant traversals in such programs. The analysis handles imperative loops
that traverse XML values explicitly and declarative queries over XML data in a uni-
form framework. We describe two optimizations that take advantage of our analysis:
one merges queries that traverse the same set of XML nodes, and the other replaces
an XPath expression by a previously computed result. We demonstrate performance
improvements for selected XMark benchmark queries and XLinq sample queries.

Key words: Program analysis, XML, Imperative programming

1. Introduction

XML processing applications in imperative languages such as Java and C# use
runtime APIs such as DOM [21], or language-based approaches such as XLinq [3],
XJ [6], or XAct [9]. In either case, the programmer is provided with an XML data
model and navigational constructs. The XML data model is typically an object view,
where each element in an XML document is instantiated as an object. The navigational

1This work was supported in part by NSF Grant ST-CRTS 0540997

Preprint submitted to Elsevier March 11, 2009

constructs range from library routines that access children of a node in an XML tree,
to comprehensions, to queries in declarative query languages such as XPath [20].

The imperative nature of systems such as XLinq and XJ poses challenges that differ
from those in declarative languages such as XQuery. Consider the program in Figure1
written in a language based on XJ. Assume that in Line 1,x is set to refer to some
XML value. The XPath expression on Line 2 can be interpreted as computing the set
of all descendants of the root of the tree referred to byx such that each member of
the result is labeledbook and has an attributeauthor with value’Poe’. Similarly, the
XPath expression on Line 5 can be interpreted as computing the set of allpublisher
descendants ofx. Some challenges in the optimization of such programs are:

• Query identification: Queries may be latent in a program where program-
mers combine imperative traversals (with variable assignment) with declarative
queries. Consider the loop that begins on Line 7 of Figure1. The statement on
Line 10 can be interpreted ask = k ∪ { i}—the accumulate operator “⇐” models
the invocation of a method such asadd on an instance of theSet class in Java.
Observe that at the end of the loop,k is guaranteed to contain the same value as
y. While the loop itself is not redundant (it has effects), thecomputation ofk
certainly is.

• Optimizations across Multiple Queries: The detection of two queries (or sub-
queries) that return the same results could be used to removeredundant compu-
tation. The complication in this analysis is that there are many ways of writing
equivalent queries (including as explicit loops), which precludes the use of syn-
tactic techniques such as value numbering [1, 8]. In all executions of the program
of Figure1, the variablev on Line 4 will refer to the same value asy—the com-
putation ofv is redundant.

Further, two different computations over an XML tree may visit the same set of
nodes, even if they do not produce the same value. If so the twocomputations
could be combined to return the two results in a single traversal. This transforma-
tion is calledtupling. Consider the expressions in Lines 2 and 5. They traverse
the same set of nodes (the subtree rooted atx), but filter these sets in different
ways—both sets of results can be produced efficiently in one traversal.

This paper studies the analysis of imperative XML processing programs, where
traversals over data may be specified in many ways—as explicit loops over data and in
terms of XPath expressions. We present a program analysis, based on a flow-sensitive
type system, for detecting both redundant computations andredundant traversals in
such programs. The analysis handles both loops that traverse XML values explicitly
and declarative query expressions in a uniform framework. For exposition, we focus
on a core language for XML processing based on the XJ programming language.

The contributions of this paper are an analysis, based on a flow-sensitive type sys-
tem, that computes a symbolic representation of the values assumed by each XML
expression or variable in a program; a proof of correctness of the analysis; a descrip-
tion of transformations enabled by the analysis; experimental results that provide a
preliminary demonstration of the effectiveness of the transformations.

2

1 x = . . . ;
2 y = x//book [@author= ’ Poe ’] ;
3 u = x//book ;
4 v = u [@author= ’Poe ’] ;
5 z = x//pub l i she r ;
6 k = ∅ ;
7 foreach i in u {
8 System . out . p r i n t l n (i) ;
9 i f (i [@author= ’ Poe ’])

10 k ⇐ i
11 }

Figure 1: Example demonstrating redundant computations.

Structure of the Paper. Section2 introduces the XML processing language that we
use as the basis of the exposition of our analysis. In Section3 we describe the types
that track the values of expressions and variables in programs, and formally define cor-
rectness criteria for our analysis. In Section4 we present a flow-sensitive type system
for detecting redundant computations and traversals. We describe the transformations
enabled by the analysis in Section5. Section6 discusses how our approach can be ex-
tended to a full imperative language such as XJ. Section7 describes our implementation
and experimental results. Section8 presents related work. We conclude in Section9
and give a proof of correctness of our analysis as an appendix.

2. Syntax and Semantics

We model XML documents as ordered, labeled trees.T refers to the set of all such
trees, andN is the (infinite) set of all nodes used in trees inT. Each noden in each
XML tree has unique identity and a label,LABEL(n), drawn from an infinite alphabet
Σ (we use uppercase characters (A,B, C) to represent members ofΣ).

We focus on a fragment of XPath 1.0 [20], whose (somewhat non-standard) syntax
is listed in Figure2. The evaluation of an XPath expression is always with respect
to a set of nodes in XML trees (the nodes could belong to different XML trees) and
the result is another set of nodes. The operators↓ and ↓+ represent thechild and
descendanttraversals, that is, they return the union of the set of children and the set of
descendants of the nodes in the input node set, respectively. In the syntax,s ranges over
Σ and it represents a node test, which filters its inputs with respect tos. The semantics
of these expressions is standard and is also provided in Figure2.

We describe a core imperative language for XML processing that serves as the
domain for our static analysis (Figure3). For simplicity, we have not included XML
literal-based construction, XML updates, effects (such asI/O or Java-like constructs),
a more expressive XPath fragment, or schema information in our core language. The
handling of these constructs is mostly orthogonal to the central ideas of this paper.
We use this compact core language for the exposition and proof of soundness of our
analysis. A proof of soundness for the core language illustrates interesting features of

3

Xp ::= ǫ | ↓ | ↓+ | s | Xp/Xp | Xp[Xp] | Xp[¬Xp]

J·K : P(N) → P(N)

JǫK(N) = N
J↓K(N) =

⋃

{child(n) | n ∈ N}
J↓+K(N) =

⋃

{descendant(n) | n ∈ N}
JsK(N) = {n ∈ N | LABEL(n) = s}
JXp1/Xp2K(N) = JXp2K(JXp1K(N))
JXp1[Xp2]K(N) = {n ∈ JXp1K(N) | JXp2K({n}) 6= ∅}
JXp1[¬Xp2]K(N) = {n ∈ JXp1K(N) | JXp2K({n}) = ∅}

Figure 2: Syntax and semantics of XPath-like expressions. We further use parentheses for disambiguation.

Var ::= Id | Index| Doc
Expr ::= Var | Var / Xp | ∅

Stmt ::= Id = Expr
| Id ⇐ Expr
| if (Expr) then Stmtelse Stmt
| foreach Indexin Expr Stmt
| Stmt; Stmt
| skip

Figure 3: Language syntax.

a proof for an imperative language such as XJ, and offers a base for understanding how
to treat extensions of the core language (Section6).

In the language, there are three disjoint, finite sets of variables—Id, Index, andDoc.
Indexvariables may only appear inforeach statements, where eachforeach statement
has a uniqueIndexvariable. TheDoc variables represent some input XML document
or XML construction. OnlyId variables may be on the left-hand side of assignments
or accumulations.Indexvariables are updated implicitly by loops andDoc variables
remain constant through the program.

The semantics of program execution is provided in Figure4. A value in the lan-
guage is a subset ofN . A storeσ maps each program variable to such a value.
〈S, σ〉 ⇓ σ′, whereσ, σ′ arestores, represents that the evaluation of statementS takes
the program from storeσ to σ′. 〈Expr, σ〉 |= value states that expressionExpr evalu-
ates tovalue, given storeσ.

In the initial store, eachId variable used in the program is mapped to∅, and each
Doc variable used in the program is mapped to the root node of sometree inT. The
expressionVar/Xp evaluates the XPath expressionXp with respect to the set of nodes
specified byVar.

4

VAR

〈x, σ〉 |= σ(x)

XPATH

〈x/Xp, σ〉 |= JXpK(σ(x))

EMPTY

〈∅, σ〉 |= ∅

ASSIGN

〈Expr, σ〉 |= N

〈x = Expr, σ〉 ⇓ σ[x 7→ N]

ACCUM

〈Expr, σ〉 |= N N ′ = σ(x) ∪N

〈x ⇐ Expr, σ〉 ⇓ σ[x 7→ N ′]

IF-THEN

〈Expr, σ〉 |= N,N 6= ∅ 〈S1, σ〉 ⇓ σ′

〈if(Expr) then S1 else S2, σ〉 ⇓ σ′

IF-ELSE

〈Expr, σ〉 |= ∅ 〈S2, σ〉 ⇓ σ′

〈if(Expr) then S1 else S2, σ〉 ⇓ σ′

FOREACH

〈Expr, σ〉 |= {x1, x2, . . . , xk}
〈S, σ[i 7→ {x1}]〉 ⇓ σ1

···
〈S, σk−1[i 7→ {xk}]〉 ⇓ σk

〈foreach i in ExprS, σ〉 ⇓ σk[i 7→ ∅]

COMPOSE

〈S, σ〉 ⇓ σ′ 〈S′, σ′〉 ⇓ σ′′

〈S;S′, σ〉 ⇓ σ′′

SKIP

〈skip, σ〉 ⇓ σ

Figure 4: Language semantics.

A program is aStmt. Theforeach loop iterates over the value denoted by itsExpr,
which we call the loop’siteration space; for each node in this set, it binds theIndex
variable to a singleton set consisting of that node, and thenevaluates theStmtin the
new store. Since an index variable is only defined within a loop, it is removed from the
result store of the loop. The execution offoreach is non-deterministic (the elements
are visited in some unspecified order). The statementskip has no effect on the store.
The accumulate statement,x ⇐ y, setsx to the equivalent ofx ∪ y. Observe that one
can express general union operations,i.e., x = y ∪ z, with a pattern likex = y; x ⇐ z.

Consider the code sample in Figure5. Line 1 setsx to the singleton set containing
the root of some XML tree that is referred to by theDoc variabled. The foreach
loop on lines 3–7 iterates over an XPath expression evaluated with respect to the value
referred to byx. This expression returns a set of nodes containing allB descendants
of the root node of the tree referenced in Line 1. In each iteration of the loop, if a
particularB node has aC child, then theB node is added toy. At the end of the loop,
y will refer to the equivalent of the expressionx/↓+/(B[↓/C]).

3. Types

The types in our type system are the “don’t know” type orξ; the “empty” type or
∅, which denotes that a variable or expression evaluates to anempty set; types of the
form (x,Xp,Ψ), whereΨ is a set{ψ1, . . . , ψk} and eachψi is of the formτ or¬τ with

5

1 x = d ;
2 y = ∅ ;
3 foreach i in x/ ↓+ /B
4 i f (i/ ↓ /C) then
5 y ⇐ i
6 else
7 skip

Figure 5: Sample program.

τ a type, and union types,τ1 ⊕ τ2. This gives us a type lattice with∅ as the bottom
andξ as the top element.

τ ::= ξ | ∅ | (x,Xp,Ψ) | τ ⊕ τ ′

Ψ = {ψ1, . . . , ψk},where ψi ::= τ | ¬τ

In a type(x,Xp,Ψ), x is either aDoc or an Indexvariable, andXp is an XPath ex-
pression. For such a type, we refer tox as thecontext variableof the type, andΨ
as thefilter of the type. If a variable has the type(d, ǫ,∅), under all executions, the
variable refers to the value to which the store mapsd. The type(d, ǫ,Ψ) is equivalent
to (d, ǫ,∅) if the denotation of eachψ ∈ Ψ is non-empty, and to∅ otherwise.

For example, consider the type(x, A,∅): This type describes precisely the type of
all elements in the XPath expressionx/A. If we now add a filter{τ}, then(x, A, {τ})
may describe one of three things:

1. If τ does not describe any elements, then neither does(x, A, {τ}).
2. If τ describes some elements, then(x, A, {τ}) again describes all elements in the

pathx/A.
3. If τ denotes the type of the distinguished ‘don’t-know’ setξ, then we don’t know

whether or not it applies as a filter; thus, we must interpret(x, A, {τ}) asξ also.

More precisely, the denotation of a typeτ is defined in terms of a special store
D. This denotation,JτKD, is a subset ofN or a distinguished setξ. SinceJ−KD

only depends onDocvariables, which never change during the course of the program,
J−KD is independent of any execution state. Without loss of generality, we assume in
the remainder of this document that all storesσ are withinDoc pointwise equal. We
then define the semantics of our types as:

JξKD = ξ J∅KD = ∅ Jτ1 ⊕ τ2KD = Jτ1KD ∪ Jτ2KD

J(x,Xp,Ψ)KD =

JXpK(D(x)) satisfied(Ψ) = true

ξ satisfied(Ψ) = ξ

∅ otherwise

The functionsatisfied(Ψ) is a three-valued logic function:

satisfied(Ψ) =

ξ ∃τ ∈ Ψ ∨ ¬τ ∈ Ψ, JτKD = ξ.

true ∀τ ∈ Ψ, JτKD 6= ∅ ∧ ∀¬τ ∈ Ψ, JτKD = ∅

false otherwise

6

A typing environment,Γ, maps program variables to types. Our goal is a type sys-
tem that ensures that if two variablesx andy are assigned equivalent types at a program
point, then in all executions of the program,x andy refer to identical values at that pro-
gram point. Our notion of equivalence here is semantic in nature. We find it sufficient
to require this notion of equivalence,≡, to be a conservative approximation (sound but
not necessarily complete) of full semantic equivalence that satisfies certain minimal
properties. These properties are relevant for our correctness proof (Appendix10.4) and
can be helpful during implementation. We require that(≡) at least (i) relates syntac-
tically identical types; (ii) satisfies the rewriting rulesfrom Table6; and (iii) satisfies
a further non-discrimination property (Definition17). We later motivate and discuss
individual rewriting rules in detail.

A storeσ is consistentwith a typing environmentΓ, iff for all x : τ ∈ Γ, τ ≡ ξ or
JτKD = σ(x). With this definition of consistency, we define soundness as follows:

Definition 1 (Statement Typing Soundness).If a storeσ is consistent withΓ, and
Γ {S} Γ′ and〈S, σ〉 ⇓ σ′, thenσ′ is consistent withΓ′.

By Γ {S} Γ′, we mean that if the type system starts in environmentΓ, the en-
vironment at the end ofS is Γ′. Specifically, if a storeσ is consistent withΓ and
Γ(x) ≡ Γ(y), andΓ(x) 6≡ ξ, thenx andy contain the same value at that point.

In the following, we develop a type system with this property.

4. A Flow-Sensitive Type System

We first consider a type system for detecting when variables must refer to the same
value in programswithout loops. We then extend this type system to support loops.
The typing judgments for expressions (Figure7) are of the formΓ ⊢ Expr : τ .

It is straightforward to show that if a storeσ is consistent with respect to an envi-
ronmentΓ, and〈Expr, σ〉 |= N , thenΓ ⊢ Expr : τ implies thatτ ≡ ξ or JτKD = N .

4.1. Analyzing Programs Without Loops

Figure8 lists the judgments of our type system for statements other thanforeach.
The judgments are of the formΓ {S} Γ′. A programS is well typed ifΓ∅ {S} Γ′ is
derivable, whereΓ∅ assigns the∅ type to eachId variable, and(d, ǫ,∅) to eachDoc
variabled.

The rule for accumulation reflects the set-based semantics of the operation — the
resulting type is the union of the types of the two expressions in the accumulation.

The IF rule is designed to handle cases such as the following statement:

if c then y = c/Xp2 else y = ∅

If the type of the variablec is (d,Xp1,∅), then ideally the analysis should derive the
type (d,Xp1/Xp2,∅) for y at the end of the conditional. In any execution of the
program, the store would either mapc to ∅ or to a non-empty set of nodes. In the first
case, theelse branch would be taken, andJ(d,Xp1/Xp2,∅)KD = ∅, which is sound.
If c is non-empty, then again(d,Xp1/Xp2,∅) would be an appropriate type according
to thex/Xp rule in Figure7.

7

τ1 ⊕ τ2 ⇐⇒ τ2 ⊕ τ1 (comm)

(τ1 ⊕ τ2) ⊕ τ3 ⇐⇒ τ1 ⊕ (τ2 ⊕ τ3) (assoc)

(x,Xp, {τ} ∪ Ψ)
⊕(x,Xp, {¬τ} ∪ Ψ)

⇐⇒ (x,Xp,Ψ) (if ξ(τ)) (join)

(x,Xp, {τ1 ⊕ τ2} ∪ Ψ) =⇒ (x,Xp, {τ1, τ2} ∪ Ψ) (flat-0)

(x,Xp, {¬(τ1 ⊕ τ2)} ∪ Ψ) =⇒ (x,Xp, {¬τ1,¬τ2} ∪ Ψ) (flat-0′)

(x,Xp, {(y,Xp′,Ψ′)} ∪ Ψ) =⇒ (x,Xp, {(y,Xp′,∅)} ∪ Ψ ∪ Ψ′) (flat-1)

(x,Xp, {¬(y,Xp′,Ψ′)} ∪ Ψ) =⇒ (x,Xp, {¬(y,Xp′,∅)} ∪ Ψ ∪ (¬Ψ′)) (flat-1′)

τ ⊕ ∅ =⇒ τ (empty)

(x,Xp, (x,Xp,Ψ)) =⇒ (x,Xp,Ψ) (selfdep)

(x, ǫ/Xp,Ψ) =⇒ (x,Xp,Ψ) (xpǫ)

(x,Xp/ǫ,Ψ) =⇒ (x,Xp,Ψ) (xpǫ′)

(x, (Xp/Xp′)/Xp′′,Ψ) ⇐⇒ (x,Xp/(Xp′/Xp′′),Ψ) (xpassoc)

τ ⊕ ξ =⇒ ξ (⊕ξ)

(x,Xp, {ξ} ∪ Ψ) =⇒ ξ (Ψξ)

(x,Xp, {¬ξ} ∪ Ψ) =⇒ ξ (Ψ¬ξ)

Figure 6: Type equivalence rules, expressed as rewriting rules. We require the equivalence relation≡ to
respect the above rules. In the rule (join), predicateξ(τ) holds iff τ does not syntactically containξ.

Γ ⊢ ∅ : ∅

x : τ ∈ Γ

Γ ⊢ x : τ

Γ ⊢ x : τ

Γ ⊢ x/Xp : τ ◦ Xp

ξ ◦ Xp = ξ ∅ ◦ Xp = ∅ (x,Xp1,Ψ) ◦ Xp2 = (x,Xp1/Xp2,Ψ)

(τ ⊕ τ ′) ◦ Xp = (τ ◦ Xp) ⊕ (τ ′ ◦ Xp)

Figure 7: Expression type system.

The typing rule evaluates thethen andelse branches of anif statement indepen-
dently. Themerge function is used to unify the environments obtained in the two
branches. Its definition depends on that of the type constructor, τ [ψ]. For a typeτ and

8

ASSIGN

Γ ⊢ Expr : τ

Γ{x = Expr} Γ[x 7→ τ]

ACCUM

Γ ⊢ Expr : τ Γ ⊢ x : τ ′

Γ{x⇐ Expr} Γ[x 7→ τ ′ ⊕ τ]

SEQ

Γ {S1} Γ′ Γ′ {S2} Γ′′

Γ {S1;S2} Γ′′

IF

Γ ⊢ Expr : τ
Γ {S1} Γ′ Γ {S2}Γ

′′ Γf = merge(Γ′,Γ′′, τ)

Γ {if Expr then S1 else S2} Γf

SKIP

Γ {skip} Γ

Figure 8: Type system for programs without loops.

ψ, whereψ is of the formτ ′ or¬τ ′, we defineτ [ψ] as follows:

τ [ψ] =

ξ τ = ξ ∨ τ ′ = ξ

∅ τ = ∅ ∧ τ ′ 6= ξ

τ1[ψ] ⊕ τ2[ψ] τ = τ1 ⊕ τ2 ∧ τ ′ 6= ξ

(d,Xp,Ψ ∪ {ψ}) τ = (d,Xp,Ψ) ∧ τ ′ 6= ξ

Definition 2. Themerge(Γ′,Γ′′, τ) function yields a new environmentΓf such that:

merge(Γ′,Γ′′, τ)(x) =

{

Γ′(x) Γ′(x) ≡ Γ′′(x)

Γ′(x)[τ] ⊕ Γ′′(x)[¬τ] otherwise

In short, themerge function encodes the control dependency in the type of a vari-
able to ensure greater precision. In our example, the resulting type fory would be
(d,Xp1/Xp2,∅) in Γ′, and∅ in Γ′′. The merge function would generate the type
(d,Xp1/Xp2, {(d,Xp1,∅)})⊕∅, which can be simplified to(d,Xp1/Xp2,∅), which
is equivalent toΓf (c)◦Xp2 (whereΓf is again the environment determined bymerge).

4.2. HandlingForeach Loops

We now consider the one missing part of our earlier specification, namelyforeach
loops of the form

foreach i in PATH { BODY }

Our goal is to determine the types of variables assigned to oraccumulated on within
the loop body. In some cases, we can determine the types simply by observing the kinds
of operations performed; we consider these cases first. For example,

foreach i in d / Xp {
a = i ;

}

9

Here, ourASSIGN inference rule specifies that the type ofa should be whatever the
type of i is. While this is appropriate locally, it is inadequate after the loop:a should
have the type of the last element ind/Xp. Since we have defined the traversal order
of foreach loops as nondeterministic, we cannot express this concept.Consequently,
we must assigna the typeξ; this generalizes to all assignments that involve the loop
variable on the right-hand side.

Now, consider assignments that do not involve the loop variable:

foreach i in d / Xp {
a = y ;

}

According toASSIGN, a : (y, ǫ,∅). However, this type judgment is incorrect outside
of the loop: ifJd/XpK = ∅, then the loop body will never execute — and thereforea
would remain unmodified. Thus, we should give the same type wewould give in the
program

i f (d / Xp)
a = y ;

else skip ;

Of the remaining block constructs, both sequencing and conditionals turn out to be
innocuous. This leaves us with accumulation. First consider accumulation that does
not involve the loop variable:

foreach i in d / Xp {
a ⇐ y ;

}

This example has the same problems as assignment, in that it may be conditional, and
we can handle it equivalently.

Finally, consider accumulation with a loop variable:

foreach i in d / Xp {
a ⇐ i ;

}

In this case, thea accumulates all elements selected byd/Xp. If a : ∅ held before
the loop, we therefore expecta : (d,Xp,∅) after the loop, otherwise a union type
involving whichever type previously populateda.

We have now found type assignments for all interesting scenarios. We now describe
how to detect these scenarios and integrate them with our existing typing rules (Fig.8).

For the existing rules to serve as the basis for detection, weassign loop variables
to a distinguished type. We assigni : (i, ǫ,∅), allowing us to distinguish types that
involve the loop variablei from types that do not. Distinguishing accumulation of loop
variables from assignments of loop variables is more difficult. Consider the loop body
in the following program:

foreach i in d / Xp {
a ⇐ i ;
b = i ;

}

10

Considering only the loop body, we arrive at the distinct typing judgments

a : ∅ ⊕ (i, ǫ,∅)
b : (i, ǫ,∅)

However, union types can arise in other ways also, see the “IF” typing rule. There is
one crucial difference between assignments in conditionals and aggregation that we can
exploit, though: conditional assignmentsetstypes, while aggregationmodifiestypes,
and (in particular) retains its previous type as part of the resulting union.

In practice, it can be hard to track exactly what this previous type is. Therefore
instead of typing the loop body with the concrete environment preceding it, we type it
starting with a specially tagged environment that exposes accumulation, and later graft
this “special” environment onto the previous environment.

More concretely, we begin with an environment

Γ0 = {j 7→ (j, ǫ,∅)}

that maps not only document variables, but alsoIndexandId variables to a specially
tagged type. We then compute an environmentΓs via our existing type inference rules,
as in

Γ0{S}Γs

Assume a fixed but arbitraryforeach loop with index variablei. Γs then defines
the effect of the loop, as follows:

• Γs ⊢ x : (x, ǫ,∅): means thatx was not modified in the loop (or, if it was
modified, it was set back to its original value). We can thus leave the type ofx
alone.

• Γs ⊢ x : (x, ǫ,∅) ⊕ (i,Xp,Ψ): means thatx has accumulatedi. First,x refer-
ences the loop variable — this means thatx absorbs all elements of the iteration
space (moduloXp andΨ). Secondly,x references itself, unmodified — this
means that, during each iteration,x preserved whatever contents it held in the
previous iteration (and before the loop). Correspondingly, we replace it by the
iteration space of the loop, processed and filtered as perXp andΨ.

• While there are other cases we can handle effectively, we canalways default to
ξ if we are not sure of the outcome.

This approach works well in most instances, but it leaves open how we should deal
with occurrences ofi in Ψ. While we can always map such variables toξ, we can do
better. First consider how such types arise:

foreach i in d /A {
i f i /↓ /B

x ⇐ i ;
else skip ;

}

11

Here, we arrive at the type

Γs ⊢
{

x : (x, ǫ, {(i, ↓ /B,∅)}) ⊕ (i, ǫ, {(i, ↓ /B,∅)})⊕ (x, ǫ, {¬(i, ↓ /B,∅)})

The type ofx is somewhat involved. To understand it properly, we first note three
equivalences (in the form of rewriting rules) that allow us to simplify the type:

τ1 ⊕ τ2 ⇐⇒ τ2 ⊕ τ1 (comm)

(τ1 ⊕ τ2) ⊕ τ3 ⇐⇒ τ1 ⊕ (τ2 ⊕ τ3) (assoc)

(x,Xp, {τ} ∪ Ψ) ⊕ (x,Xp, {¬τ} ∪ Ψ) ⇐⇒ (x,Xp,Ψ)(if ξ(τ)) (join)

whereξ(τ) iff τ does not syntactically contain aξ. All rewriting rules employed in this
section are summarized in Figure6.

Using the above three rewriting rules, we arrive at the semantically equivalent type

Γs ⊢ x : (x, ǫ,∅) ⊕ (i, ǫ, {(i, ↓ /B,∅)})

Were we to translate this type with the same scheme as above, we would interpret our
result as mappingx : τ to τ ⊕ (d, A, {(d, A/ ↓ /B,)}). This type means “if there
is any node ind/A/ ↓ /B, then addd/A to τ , otherwise leaveτ alone”. But if we
examine the loop that definedx, we notice that its semantics are “for each node ind/A,
if this node has a child withB, add it” — which we can also express asd/A[↓ /B].

Therefore, our approach gave the wrong result. The reason for this is that each
individual instance of addingi coincided with a condition only on that particulari,
instead of on the entire iteration space. In our solution below, we address this by
rewriting dependences oni in Ψ to conditions on the XPath fragment, in a function
flatten.

flatteni((i, A, {(i, B, {(x, C,∅)})})) = (i, A, {(i, B,∅), (x, C,∅)})

Before this step, we simplify our types. Note that conditions may be nested arbi-
trarily deeply inside each other, as in

(c, ǫ, {(d, ǫ, {¬(e, ǫ, . . .)})})

It can be hard to see what the semantics of such types are. Below we show how we can
simplify types to eliminate deep nesting.

Definition 3. A type τ is predicate-freeiff τ ∈ {ξ,∅} or τ = τ1 ⊕ τ2 andτ1, τ2 are
both predicate-free, or ifτ = (x,Xp,∅).

Conversely, a type ispredicatedif it is not predicate-free.

We have defined the absence of predication as a syntactic property, though there are
some types that are inherently predicated (i.e., cannot be rewritten into predicate-free
types), such as(c,Xp, {(d,Xp′,∅)}). This type depends on two different root nodes,
so we cannot simplify it. However, we can reduce them to a single level of nesting,
yieldingpredicate-normaltypes:

12

Definition 4. A type τ is predicate-normaliff τ ∈ {ξ,∅}, τ = τ1 ⊕ τ2 and both
τ1 andτ2 are predicate-normal, or ifτ = (x,Xp,Ψ), and for allτ ′,¬τ ′ in Ψ, τ ′ is
predicate-free.

Lemma 1. For each typeτ , there exists a semantically equivalent typeτ ′ such thatτ ′

is predicate-normal.

Proof. We can rewrite each type that is not predicate-normal to a type that is predicate-
normal by repeatedly applying the following semantics-preserving rewriting rules:

(x,Xp, {τ1 ⊕ τ2} ∪ Ψ) =⇒ (x,Xp, {τ1, τ2} ∪ Ψ) (flat-0)

(x,Xp, {¬(τ1 ⊕ τ2)} ∪ Ψ) =⇒ (x,Xp, {¬τ1,¬τ2} ∪ Ψ) (flat-0′)

(x,Xp, {(y,Xp′,Ψ′)} ∪ Ψ) =⇒ (x,Xp, {(y,Xp′,∅)} ∪ Ψ ∪ Ψ′) (flat-1)

(x,Xp, {¬(y,Xp′,Ψ′)} ∪ Ψ) =⇒ (x,Xp, {¬(y,Xp′,∅)} ∪ Ψ ∪ (¬Ψ′)) (flat-1′)

where¬{τ1, . . . , τn} = {¬τ1, . . . ,¬τn} and¬¬τ = τ . We defer the proof of correct-
ness for the above rules to Theorem3.

With our notion of predicate-normal types, we define a helperfunction:

Definition 5. Let τ be a type. Thenpn(τ) is a predicate-normal type such thatpn(τ) ≡
τ .

As we know from Lemma1, pn is total. However, there may be many such functions;
without loss of generality, we can pick any one of them.

We use the notion of predicate-normal types to simplify the definition offlatten:

Definition 6.

foldi(Xp,Ψ) =

foldi(ǫ[Xp′]/Xp,Ψ′) Ψ = {(i,Xp′,∅)} ∪ Ψ′

foldi(ǫ[¬Xp′]/Xp,Ψ′) Ψ = {¬(i,Xp′,∅)} ∪ Ψ′

(i,Xp,Ψ) otherwise

flatteni(τ) =

flatteni(τ1) ⊕ flatteni(τ2) τ ′ = τ1 ⊕ τ2
foldi(Xp,Ψ) τ ′ = (i,Xp,Ψ)
ξ τ ′ = (x,Xp,Ψ), x 6= i

and(Ψ = {(i,Xp′,∅)} ∪ Ψ′

or Ψ = {¬(i,Xp′,∅)} ∪ Ψ′)
τ otherwise

whereτ ′ = pn(τ).

For example, consider the program fragment

x = ∅

foreach i in d /X {
i f (i /B) {

i f (k /C) {
x ⇐ i /A ;

} } }

13

Here, we would inferx : (i, A, {(i, B,∅), (k, C,∅)}) to indicate thatx accumulates all
the elements ind/X that have aB child, or nothing at all ifk/C is empty. We flatten
this as follows:

flatteni((i, A, {(i, B,∅), (k, C,∅)})) = foldi(A, {(i, B,∅), (k, C,∅)})

= foldi(ǫ[B]/A, {(k, C,∅)})

= (i, ǫ[B]/A, {(k, C,∅)})

The resultant type expresses our intuitive earlier notion formally. This is not quite
the type we ultimately want forx yet, though — to get that type, we need to ‘promote’
this type to

x : (d, X/ǫ[B]/A, {(k, C,∅)}) ≡ (d, X [B]/A, {(k, C,∅)})

We describe our notion of ‘promotion’ below, though we first need a helper func-
tion rec that distinguishes variables that are potential accumulators (i.e., that reference
themselves in their result type) from others:

Definition 7.

rec(x, τ) =

true τ = (x, ǫ,∅)
true τ = τ1 ⊕ τ2

andrec(x, τi) = true, for somei ∈ {1, 2}
false otherwise

Now we are ready to formalize loop body treatment and ‘promotion’:

Definition 8. Let τ ≡ (c,Xp,Ψ). Then

promoteΓ,τ,i(x, r, τ
′) =

Γ(x) τ ′ = (x, ǫ,∅)
(τ ◦ Xp′)[promoteΓ,τ,i(⊥, true,Ψ′)] τ ′ = (i,Xp′,Ψ′)

andr = true
∅ τ ′ = ∅

promoteΓ,τ,i(x, r, τ1)
⊕promoteΓ,τ,i(x, r, τ2)

τ ′ = τ1 ⊕ τ2

(d,Xp′, promoteΓ,τ,i(⊥, true,Ψ′)) τ ′ = (d,Xp′,Ψ′)
andd ∈ Doc

ξ otherwise

where⊥ is a fresh identifier (i.e., an identifier that is not part of the program), and
τ [{ψ1, ψ2, . . . , ψn}] = τ [ψ1][ψ2, . . . , ψn].

We extend the definition ofpromote to environments as follows:

promoteΓ,τ,i(Γ
′) ⊢ x : τ ′′ ⇐⇒ Γ′ ⊢ x : τ ′

andpromoteΓ,τ,i(x, rec(x, τ
′)τ ′) = τ ′′

14

promote permits assignments within the loop body. Since these assignments are
only executed if the loop body is executed at least once, we must treat the resulting
environment as we would treat the “then” branch of a conditional. For this purpose,
we recycle our functionmerge that we previously defined for handling conditionals.
Putting everything together, we arrive at our typing rule:

Γ ⊢ XP : τ Γ0{S}Γs Γf = flatten(Γs)

Γ { foreach i in XP { S } } merge(promoteΓ,τ,i(Γf),Γ, τ)

To see that this rule is correct, consider the following examples:

Example 1 (Simple loop accumulation).

a = ∅ ;
foreach i in d /Y {

a ⇐ i ;
}

Γs ⊢
{

a 7→ (a, ǫ,∅) ⊕ (i, ǫ,∅)}

flatten is a no-op here, soΓf = Γs. promote then mapsa to the entire iteration space
(in union with its previous contents). Aftermerge, we arrive at the type

a : (d, Y, {(d, Y,∅)}) ⊕ ∅

While this type is correct, it is unnecessarily complex. We therefore introduce two
more rewriting rules based on semantic equivalence:

τ ⊕ ∅ =⇒ τ (empty)

(x,Xp, (x,Xp,Ψ)) =⇒ (x,Xp,Ψ) (selfdep)

We then find the desired type judgment

a : (d, Y,∅)

Example 2 (Nested loop accumulation).

x = e /B;
foreach i in d /A {

foreach j in i /↓ /B {
x ⇐ j ;

}
}

First consider the inner loop:

Γs =
{

x 7→ (x, ǫ,∅) ⊕ (j, ǫ,∅)}

analogously to our previous example. This type we map toτ ⊕ (i, ↓ /B,∅), where
x : τ held before the inner loop. To determine what thisτ is, now consider the outer

15

loop: In the outer loop, we (at this point) are usingΓ0, andΓ0 ⊢ x : (x, ǫ,∅). Thus,
the outer loop yields

Γs =
{

x 7→ (x, ǫ,∅) ⊕ (i, ↓ /B,∅)}

flatten is again a no-op, andpromote maps the type ofx to

x : τ ′ ⊕ (d, A/ ↓ /B,∅)

whereτ ′ is the type we have forx prior to the outer loop body. This type is(e, B,∅),
so the final type judgment is

x : (e, B,) ⊕ (d, A/ ↓ /B,∅)

as we expected.

4.3. Correctness

As our examples illustrate, our algorithm is precise in manyinteresting cases. It
is also sound, as we show in Appendix10.4. Our proof is mostly technical. We first
show that our algorithm is sound in the absence of loops. We find it useful to introduce
a relation(⊑) that expresses that a type approximates another–τ ⊑ τ ′ iff JτKD = ξ or
JτKD = Jτ ′KD. We extend this definition to environments.

Next, we introduce a notion of substitution via a functionsubst (Section10.3),
wherein we substitute environments into other environments with holes derived from
‘abstract environments’Γ0. These abstract environments are precisely the specially
tagged environments we used in Section4.2.

In Theorem1 we then show the following: LetΓ{S}Γ′, andΓ0{S}Γ1. Then
subst(Γ,Γ1) ⊑ Γ′, wheresubst(Γ,Γ1) substitutes mappings fromΓ into all ‘holes’ in
Γ left over from the initial abstract environmentΓ0.

This property is then fundamental in our proof for correctness in the presence of
loops: we show that all types that our algorithm does not map to ξ are either preserved
or accumulate inductively, resulting in Lemma16. Theorem2 then collects our results
and proves correctness.

4.4. Algorithmic complexity

The algorithm for assigning types to variables according tothe typing rules spec-
ified in Sections4.1 and4.2 is fairly straightforward. It starts with an empty envi-
ronment,Γ∅, and applies the typing rules to each statement to produce the resulting
environment. When a loop is encountered, the algorithm applies the rules to the ab-
stract environment, and then promotes the results. Each statement is visited only once.

The complexity of the algorithm depends on efficient mechanisms for simplifying
union types, for detecting the equivalence of types, and an efficient representation of
sets.

Independently of those factors, the number of operations ontypes is linear in the
size of the program. The size of the predicate set is also linear with respect to program
size. Union types make the worst-case complexity exponential, since they can poten-
tially double in length after each conditional. However, inpractice the length has a

16

much lower bound, as shown in [7]. We can perform simplifications that in practice re-
duce the length of union types. Further, we can guarantee a linear bound on the length
of union types by selecting a size limit and setting a type toξ whenever that bound is
reached.

There are several techniques for determining the equivalence of XPath expres-
sions [12, 5]. Our analysis is orthogonal to the equivalence test used; an appropri-
ate test could be chosen depending on the fragment of XPath supported. Some XPath
equivalence tests are non-linear in the length of the types compared. In our algorithm,
we use a straightforward technique based on matching the syntactic structure of types.
Two types(x,Xp1,Ψ1) and(x,Xp2,Ψ2) are equivalent ifXp1 is equivalent toXp2

and one can match each element inΨ1 with an element inΨ2. Xp1 andXp2 are equiv-
alent if the tree representations ofXp1 andXp2 are identical modulo commutativity
of predicates, that is,τ [τ1][τ2] is equivalentτ [τ2][τ1]. While this syntactic matching
is incomplete, it allows us in practice to detect equivalences in the presence of data
value comparisons,count, and other functions that more complete techniques do not
handle [5]. Our technique for determining XPath equivalence is linear in the length of
the types compared.

5. Transformations

The analysis described in Section4 computes a symbolic representation of all pos-
sible values assumed by each XML expression or variable in the program. This section
describes how this symbolic representation is used to optimize programs. We describe
three transformations enabled by our analysis. The first iscommon subexpression elim-
ination [8], which replaces an XPath expression by a previously computed result. The
second,XPath extractionallows for the treatment of loops as XPath expressions; while
it is not an optimization in itself, it enables other optimizations. The third,common
traversal eliminationis an optimization across multiple queries; if two XPath eval-
uations traverse a common set of nodes (though they might return different results),
the XPath engine could optimize the computation by evaluating both queries in paral-
lel. We describe these transformations below. Subsection5.4discusses how the above
transformations are applied in concert.

5.1. Common Subexpression Elimination (CSE)

Common subexpression elimination (CSE)replaces an XPath expression by a pre-
viously computed result. Common subexpression elimination has been extensively
covered in the literature [8]. The symbolic representation resulting from our analysis
provides a basis for applying traditional CSE algorithms toXPath expressions. For
example, given a statement “y = x/XP”, if the analysis were to discover that the type
of some variablez after the statement is equivalent to that ofy, then we could replace
the statement with “y = z”.

We now give a general description of the CSE transformation:

/ / ∃z : z ≡ e
y = e

⇒ / / ∃z : z ≡ e
y = z

17

For CSE our analysis must determine thatΓ(z) andΓ(y) map to equivalent types,
i.e.,Γ(z) = τ andΓ(y) = τ ′ andτ ≡ τ ′. z is anavailable expressionat the point of
the assignment to y.

Consider the following transformation example, which combines XPath extraction
with CSE.

/ / ∃z : z ≡ e/Xp1

foreach i in e {
Stmt1 ;
y ⇐ i /Xp1 ;
Stmt2 ;

}

⇒
/ / ∃z : z ≡ e/Xp1

y = z ;
foreach i in e {

Stmt1 ; / / accumulate statement
Stmt2 ; / / removed from loop body

}

Before we can perform CSE in this example, we must extract an XPath expression
out of theforeach loop. We describe this transformation in Section5.2.

5.2. XPath Extraction

This transformation extracts XPath expressions out of loops that accumulate values.
It consists of two steps:loop splittingandXPath conversion. If, using algorithms such
as loop reordering analysis [13], we can detect that splitting a loop preserves semantics,
then we can isolate accumulate operations by splitting the loop. The essence of the
transformation can be described through the following example:

foreach i in x/XP {
y ⇐ i/ . . . ;
Stmt

}

⇒
/ / Loop 1
foreach i in x/XP {

y ⇐ i/ . . . ;
}
foreach i in x/XP {

Stmt / / y ⇐ . . . removed
}

The XPath conversion step replaces loops of the form of Loop 1in the previous ex-
ample with the statement “y = x/XP/ . . .”. Such a transformation may enable further
optimizations such as CSE and common traversal elimination.

In certain cases some of the code preceding the accumulate statement needs to be
duplicated becauseStmtincludes a read of i. For example:

foreach i in x/XP1 {
j = i /XP2 ;
y ⇐ j /. . . ;
Stmt(j) ;

}

⇒

foreach i in x/XP1 {
j = i /XP2 ;
y ⇐ i /. . .

}
foreach i in x/XP1 {

j = i /XP2 ;
Stmt(j) ; / / accumulate statement

/ / removed from loop body
}

In the transformation example in Section5.1, we need loop splitting prior to loop
to XPath conversion. In the transformation example in Section 5.2, loop splitting is
unnecessary.

We now give a general description of the XPath conversion transformation:

18

foreach i in x/Xp {
y ⇐ i /. . . ;

}
⇒ y = x/Xp/. . . ;

5.3. Common Traversal Elimination

Consider two XPath expressions over the same document whoseevaluation would
traverse the same set of nodes. The analysis results described in Section4 implicitly
encode the sets of nodes traversed by XPath evaluations. Common traversal elimina-
tion, or tupling, merges XPath expressions that traverse the same set of XML nodes.
Intuitively, the tupling optimization represents simultaneous computation of multiple
results over the same data set. For example, consider two XPath expressionsa =
x/↓/B/↓/C andb = x/↓/B/↓/D. The tupling transformation takes advantage of the fact
that the evaluation of both XPath expressions would visit theB children ofx and all the
children of those nodes. Rather than evaluating the two XPath expressions separately,
one could compute the two solutions in parallel. To support this optimization, we add
a new operator “⊗” to our XPath syntax. In our XPath engine, the two XPath expres-
sions would be represented asx/↓/B/↓/(C ⊗ D). The denotation of the⊗ operator,
Jτ ⊗ τ ′K(N) is defined to be the tuple〈JτK(N), Jτ ′K(N)〉. Consider a statement of the
form y = x/XP1/XP2. If some variablez at that statement has type(x,Xp1/Xp3,Ψ),
we identify the definition ofz to see if the computation ofz andy are amenable to
common traversal elimination. The transformation detectswhether the computation of
y can be safely hoisted to the point wherez is computed.

For example, consider the following instance of the transformation:

/ / ∃e : x = e/Xp1 ;
foreach i in e/Xp2 {

Stmt1 ;
y ⇐ i ;
Stmt2 ;

}

⇒
/ / ∃e : 〈x, y〉 = e/(Xp1 ⊗ Xp2) ;
/ / let y = e/Xp2;
foreach i in y {

Stmt1 ; / / y ⇐ . . . removed
Stmt2 ;

}

In this example, we first perform XPath extraction to move theassignment toy out of
the loop. We can then tuple the computation ofx andy. If Γ(x) = (d,Xp1/Xp′

1,Ψ1)
and Γ(y) = (d,Xp2/Xp′

2,Ψ2), our implementation searches for an expressione,
wheree is a “common prefix” ofx and y, i.e., forΓ ⊢ e : τ ′, where

τ ′ ≡ (d,Xp1,Ψ1) ≡ (d,Xp2,Ψ2)

The implicit encoding of traversals in the analysis resultsprovides the information
needed to find a common traversal forx andy. More elaborate matching is possible,
but would require a more complex transformation than the tupling described above.

We now give a general description of the tupling transformation:

/ / ∃ e :
x = e/Xp1 ;
y = e/Xp2

⇒ / / ∃ e :
〈x , y〉 = e/(Xp1 ⊗ Xp2)

For tupling, our analysis must determine:

Γ(x) = σ1

19

Γ(y) = σ2

∃ (σ′
1, σ′

2) such thatσ1 ≡ σ′
1/Xp1, σ2 ≡ σ′

2/Xp2, σ′
1 ≡ σ′

2, and∃ e: Γ(e) = σ′
1

The main challenge for our analysis then is to find a matchinge, wheree is a
“common prefix” of x and y. The complexity of this task largelydepends on the power
of our equivalence relation(≡).

5.4. Bringing it all together

Our general transformational approach is then the following:
Given the results of our analysis, we find all pairs of variables that are associated

with the same symbolic value at a program point. For each suchpair of variables, we
perform the CSE transformation. If the value that is computed later is a result of loop
accumulation, we precede CSE by XPath extraction.

After the CSE phase, we find all pairs of variables whose analysis results have a
common prefix. For each such pair of variables, we perform thetupling transformation.
If either value is a result of loop accumulation, we precede tupling by XPath extraction.

All transformations are subject to the constraints described in the preceding sec-
tions. If we cannot perform XPath extraction (due to dependencies, for example), we
cannot perform the subsequent transformation (CSE or tupling) on that pair of vari-
ables.

6. Extensions for Generality

For simplicity, we have focused on a core fragment of an XML-based language.
Here we discuss the extension of our analysis to the richer set of constructs available in
an imperative language such as XJ. We have implemented the analysis in the context
of a larger subset of XJ than the core language. Our implementation of the analysis
handles more general control constructs, e.g.,switch andwhile.

The interaction between XML values and non-XML values, in both our core lan-
guage and XJ, occurs in a constrained manner, namely, references are allowed from
objects of Java types to objects of XML types, but not in the other direction. For exam-
ple, XML values can be stored in fields of Java objects. Thus, traditional alias/points-to
analyses or value numbering algorithms could be applied to the non-XML (Java) sub-
set of the imperative language prior to the execution of our analysis. Our analysis can
then use the results of these pre-pass analyses as inputs. The implemented analysis
integrates the computation of single-level Java referencealiasing.

To extend our analysis to handle updates to XML values, we have to detect all
values that are or could be modified by each update statement.Implementing such
a strategy requires two parts: (1) a general update mechanism that describes what it
means for one type to be substituted by another, and (2) inference rules that tell us for
each update primitive what type they should substitute by what other type.

First, consider the general update mechanism. For all assignments of one set of
values of typeτs to a storage location represented by a typeτd, we must identify all
type assignmentsx : τ in the current environment and determine whetherτ overlaps
with τd (for this we can use existing algorithms [14]). If τ andτd do not overlap, the
assignment does not affectx. If τ andτd partially overlap or could overlap, we set

20

x : ξ. If τ andτd are equal and notξ, we setx : τs. Note that ifτd = ξ, we must map
the entire environment toξ since any value may be affected.

Second, consider update primitives in general. Each updatereplaces one set of val-
ues (of typeτs) by another (of typeτd). Thus, all we need are inference rules for each
update primitive that uses the above mechanism and construct τs andτd accordingly.

Supporting method calls would be relatively straightforward in the absence of im-
perative updates. A method may act as a query function and (inthat case) will return
the union of the types that all of its return statements return. For recursive calls, the
matter is more complex and may require handling similar to loops — though we can
always default toξ. The only complication here arises when we accumulate on formal
parameters, but we can initially approximate this by setting their types toξ after the
call.

Adding both methods and imperative updates to our core language has a more pro-
found impact. Since we assume reference semantics, updatescan affect the entire heap
and must therefore be considered globally. We can accomplish this either by employ-
ing a context-sensitive analysis, or by computing a rewritemapping for each function
that directly or indirectly updates XML values. Each rewrite mapping then updates
our environment at the corresponding method call, thereby requiring only one analysis
pass per method (as for our loops). We can use analogous techniques to provide more
precise typing judgments for formal parameters.

The type system we described is mostly orthogonal to the fragment of XPath used
- the framework depends essentially on an efficient algorithm for detecting the equiva-
lence of XPath expressions. Recently, Geneveset al. [5] have presented an engine that
in practice can detect equivalences between XPath expressions efficiently. We could
adapt our analysis to support a larger fragment by taking advantage of their equiv-
alence checker. XML Schema information can be incorporatedinto our analysis by
performing a preprocessing pass, where XPath expressions are rewritten using schema
information. For example,(a, ↓+ /A,Ψ) could be rewritten into(a, ↓ /B/ ↓ /A,Ψ)
if appropriate schema information states thatA elements only occur as children ofB
elements.

7. Experiments

The implementation of type assignment used for our experiments is based on a type
assignment algorithm described in [2], which differs in some details from the type as-
signment algorithm described in Section4.4. The algorithm described in this paper is
more efficient than the one described in [2]. The algorithm in this paper is also more
precise in terms of handling a number of cases, such as loop variable accumulation
on nonempty initial variables, that were mapped toξ or even undefined in [2]. How-
ever, the [2] algorithm does compute the correct type in the presence of aloop-carried
dependence [19] on assignment to a variable, whereas the algorithm formulated in Sec-
tion 4.4 does not. Detecting this case requires at least two passes over the loop body
(since the type of that variable might be different on the second pass). The algorithm
in this paper is a one-pass solution, and misses this case, but could readily be modified
to handle it without an additional pass. The precision of thetwo algorithms is identical

21

XLinq 34 : Union two sets of nodes: books authored by Anders and/or Peter.
XLinq 35 : Intersect two sets of nodes: books that are common for both

authors.
XLinq 36 : All nodes in first set except the nodes in the second set: books

that are authored by one without other as co-author.
XLinq 38 : Check if two sets of nodes are equal: did the two authors co-

author all of their the books?
XMark Q7 : How many pieces of prose are in the auction database?
XMark Q20: Group customers by their income and output the cardinalityof

each group.
XMark Q3 : Return the IDs of all open auctions whose current increase is at

least twice as high as the initial increase.

Figure 9: Benchmark descriptions.

with respect to the benchmarks used in this section, and so their differences are not
relevant to the measurements given here.

As discussed in Section6, our implementation is a fuller subset of XJ than our core
language, but this difference too is not relevant to our measurements.

We compare the execution times achieved by code emitted by our AXIL back-
end [15] with and without the transformations described in the paper. The benchmarks
for our experiments are based on queries drawn from the XMarkXML Benchmark
project [16] and the XLinq [3, 11] 101 samples. We selected queries that have poten-
tial for significant redundancy in terms of the computation of XPath expressions or of
the traversal of XPath nodes. The speedups obtained do not represent average expected
speedups for the full XMark or XLinq benchmark suites. Further, they do not indicate
expected speedups for a full application.

In addition to the type assignment algorithm, our compiler implements the tupling
optimization from Section5.

We provide the performance comparisons for the tupling optimization on XLinq34,
XLinq35, XLinq36, XLinq38 (from the XLinq samples) and XMarkQ7 and XMarkQ20
(from the XMark benchmark suite)2.

We ran our experiments on the data sets provided by the XMark benchmarks and
the XLinq samples. We measured the execution times with and without the tupling
optimization on an IBM Intellistation with 3.0 GHz processor and 3GB of memory,
running the IBM J9 VM 1.5.0 on top of a GNU/Linux 2.6.15-28 system. We ran each
query 10 times, discarding the first run and picking the median result for each query.
Before measuring, we removed all text output from the benchmarked code. Our results
are summarized in Table1. The results of the tupling optimization are shown in the
column “Tupling”. For the queries testing tupling, the introduction of tupling produces
an improvement of 20.5% to 47.5%.

2Our implementations of the benchmarks are available at
http://www-plan.cs.colorado.edu/creichen/xj/.

22

Table 1: Performance results, in microseconds, median out of 9 consecutive executions.
Benchmark Unopt Tupling

XLinq34 4181 2195 / 47.5%
XLinq35 3282 2609 / 20.5%
XLinq36 3794 2297 / 39.5%
XLinq38 2581 1898 / 26.5%
XMark7 16545 11749 / 29.0%
XMark20 1235 873 / 29.3%

We implemented the CSE optimizations by hand using our analysis results. We
provide results for XMarkQ3 and XMarkQ20. We manually modified XMark20.xj
into XMark20opt.xj, eliminating the redundant traversal in the same way the tupling
optimization did, and applying manual CSE to an XPath expression. XMark3opt.xjis
a manual modification ofXMark3.xjthat eliminates the redundant computation of two
XPath expressions. The improvements on other applicationsthat have the same pattern
is similar.XMark20opt.xjachieves a 50.04% reduction in the runtime ofXMark20.xj,
while the tupling optimization alone achieves a 29.3% reduction. This difference is due
to the hand-coding of XPath expression CSE inXmark20opt.xj. XMark3opt.xjachieves
an 9.4% reduction in runtime with respect toXMark3.xjby eliminating the redundant
computation of two XPath expressions.

8. Related Work

The work closest to ours is that of XAct [9], which defines a static analysis for
typechecking XML processing programs, where types are usedto verify statically that
constructed XML data satisfy a specified schema. Their analysis computes a summary
graph for every XML variable and expression in the program. It is a mayanalysis,
computing all XML templates that may occur in some program execution. Our anal-
ysis, in detecting equivalences of values of variables and expressions, is of necessity
a mustanalysis, that is, we compute the values to which an XML variable must refer
under all program executions. Secondly, in our language, asin XQuery, XJ, and the
XPath 1.0 standard, and unlike XAct, XML values have identity. In other words, two
nodes are not equivalent unless they refer to thesamenode in the same tree in memory.
This distinction results in a different flavor to the analysis and the values computed.

The problem studied in this paper is similar to the inferenceof relational queries
and optimizations from imperative programs. For example Lieuwen and Dewitt [10]
analyze database programming languages to detect whether optimizations such as re-
ordering loops can improve performance. Recently, Wiedermann and Cook studied the
inference of queries in a language with orthogonal persistence [18]. The motivation in
this paper is similar — understanding accesses to a different data model in the scope of
an imperative language. We, however, focus on the XML data model, and the XPath
querying language, with the incident challenges these bring.

Genevèset al. have developed a framework for analyzing XPath expressions(with
or without schema information). They provide a uniform representation capable of

23

answering questions such as equivalence, containment, andsatisfiability of XPath ex-
pressions. Our types fit well into their framework, and it would be interesting to use
their engine as the underlying basis of our analysis.

The problem we study in this paper is closely related to that of value numbering [1,
8], which attempts to discovers those expressions that are Herbrand equivalent:i.e.,
use the same operator applied to equivalent operands, wherethe operators are treated
as uninterpreted functions. In our context, however, it is necessary to take advantage
of known algorithms for detecting equivalences of XPath expressions, and not treat
them as uninterpreted functions. Moreover, we wished to be able to deduce the values
computed by loops in the same framework.

Steensgard [17] presents an interprocedural flow-insensitive points-to analysis for
a small imperative pointer language, based on type inference methods. He uses types
to model how storage is used in a program at runtime, where typing rules specify
when a program is well-typed. In some sense, the problem addressed in this paper
can be considered a points-to analysis problem. We wish to derive some notion of the
relationships between nodes in a tree when the tree is accessed using complex “pointer”
expressions such as XPath expressions.

9. Conclusions

In this paper, we have studied the analysis of embedded XPathqueries in an imper-
ative language. We have described a flow-sensitive type system that takes into account
the equivalence properties of XPath expressions and that can detect when a loop pro-
duces values equivalent to XPath expressions. While we havemotivated this analysis
using the example of redundant computation removal, such ananalysis is essential for
many purposes — for example, if we can infer that the values computed by a loop
are equivalent to an XPath expression, then, in certain circumstances we can replace a
loop with a direct invocation to an XPath engine that could implement the query more
efficiently (in a sense, performing strength reduction).

An interesting area of future work is to generalize the analysis to other imperative
languages that support XML queries. Languages to consider would include impera-
tive derivatives of XQuery, such as XQueryP [4]. One could also consider runtime
APIs such as DOM, if the compiler detects invocations of XPath expressions on DOM
objects as special operations.

Acknowledgements

We would like to thank Kris Rose, John Fields, and the anonymous DBPL 2007
and ISJ reviewers for their valuable insights and feedback.

References

[1] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality of
variables in programs. InProceedings of the 15th Symposium on Principles of
Programming Languages, pages 1–11, January 1988.

24

[2] Michael G. Burke, Igor Peshansky, Mukund Raghavachari,and Christoph Re-
ichenbach. Analysis of Imperative XML Programs. InDatabase Programming
Languages, 11th International Symposium, DBPL 2007, September 2007.

[3] Charlie Calvert. Linq samples update.
http://blogs.msdn.com/charlie/ archive/2007/03/04/samples-
update.aspx, 2007.

[4] Don Chamberlin, Michael Carey, Daniela Florescu, Donald Kossman, and
Jonathan Robie. XQueryP: Programming with XQuery. InXIME-P, 20606.

[5] Pierre Genevès, Nabil Layaida, and Alan Schmitt. Efficient static analysis of
XML paths and types. InConference on Programming Language Design and
Implementation, June 2007.

[6] Matthew Harren, Mukund Raghavachari, Oded Shmueli, Michael Burke, Rajesh
Bordawekar, Igor Pechtchanski, and Vivek Sarkar. XJ: Facilitating XML pro-
cessing in Java. InProceedings of World Wide Web (WWW), pages 278–287,
May 2005.

[7] P. C. Kanellakis and J. C. Mitchell. Polymorphic unification and ml typing. In
POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 105–115, New York, NY, USA, 1989.
ACM.

[8] Gary A. Kildall. A unified approach to global program optimization. InPro-
ceedings of the 1st Symposium on Principles of Programming Languages, pages
194–206, 1973.

[9] Christian Kirkegaard, Anders Møller, and Michael Schwartzbach. Static analysis
of XML transformations in Java.IEEE Transactions on Software Engineering,
30(3):181–192, 2004.

[10] Daniel F. Lieuwen and David J. DeWitt. Optimizing loopsin database program-
ming languages. InDBPL, pages 287–305, 1991.

[11] Erik Meijer and Brian Beckman. XLinq: XML Programming Refactored (The
Return of the Monoids). InXML 2005 Proceedings, 2005.

[12] Gerome Miklau and Dan Suciu. Containment and equivalence for a fragment of
XPath.J. ACM, 51(1):2–45, 2004.

[13] Soo-Mook Moon and Kemal Ebcioǧlu. Parallelizing nonnumerical code with
selective scheduling and software pipelining.ACM Transactions on Programming
Languages and Systems, 19(6):853–898, November 1997.

[14] Mukund Raghavachari and Oded Shmueli. Conflicting XML updates. InPro-
ceedings of the 10th International Conference on ExtendingDatabase Technol-
ogy, volume 3896 ofLNCS. Springer-Verlag, March 2006.

25

[15] Christoph Reichenbach, Michael Burke, Igor Peshansky, Mukund Raghavachari,
and Rajesh Bordawekar. AXIL: An XPath Intermediate Language. IBM Research
Report RC24075, 2006.

[16] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu,and R. Busse. Xmark:
A benchmark for XML data management. InProceedings of the 28th Interna-
tional Conference on Very Large Databases (VLDB), pages 974–985, 2002.

[17] Bjarne Steensgaard. Points-to analysis in almost linear time. InProceedings
of the 23rd Symposium on Principles of Programming Languages, pages 32–41,
1996.

[18] Benjamin A. Wiedermann and William R. Cook. Extractingqueries by static
analysis of transparent persistence. InProceedings of the 34th Symposium on
Principles of Programming Languages, January 2007.

[19] Michael Wolfe.High Performance Compilers For Parallel Computing. Addison-
Wesley Publishing Co., 1996.

[20] World Wide Web Consortium.XML Path Language (XPath) Version 1.0, 1999.

[21] World Wide Web Consortium.Document Object Model Level 2 Core, 2000.

10. Appendix

We now show that our type analysis results (Figure8 and foreach rule in Sec-
tion 4.2) match the results of our evaluation rules (Figure4). For our proof, we are
forced to constrain our equivalence relation(≡) to ensure that it behaves correctly
(Definition 18) and does not artificially discriminate simple types when itcan see the
equivalence between more complex types of the same structure (Definition17).

We separate our proof into two parts: First, we introduce basic properties for stores
and environments (Section10.1), then we use these definitions to show soundness in
programs that do not contain loops (Section10.2).

For the second part, we begin by introducing an apparatus to better deal with loop
bodies. Specifically, we introduce a notion ofsubstitution, implicit in our earlier de-
scription ofpromote andΓ0, and show several properties of this notion, most promi-
nently a substitution theorem (Section10.3). With the substitution theorem, we then
extend our earlier proof to include loops (Section10.4).

10.1. Stores and Environments

Definition 9. A storeσ is initial iff for all x /∈ Doc, σ(x) = ∅. An environmentΓ is
initial iff for all x /∈ Doc, Γ ⊢ x : ξ or Γ ⊢ x : ∅.

Definition 10. A typeτ syntactically contains a typeτ ′ (a variablev) iff

1. τ = τ ′ (τ = (v,Xp,Ψ) for someXp, Ψ), or
2. τ = τ1 ⊕ τ2 andτ1 or τ2 syntactically containsτ ′ (or v), or

26

3. τ = (x,Xp,Ψ) and, for someτ ′′ or¬τ ′′ in Ψ, τ ′′ syntactically containsτ ′ (or v).

An environmentΓ syntactically containsη iff, for somex, Γ(x) syntactically con-
tainsη.

Definition 11. A type or environment isloop-dependentiff it syntactically contains a
variablei ∈ Index.

Lemma 2. For all S with Γ{S}Γ′, Γ′ is loop-dependent only ifΓ is loop-dependent.

Proof. Proof by structural induction on program structure. The only interesting case is
that of loops, which both introduce and (viapromote) eliminateIndexvariables (and,
thereby, loop dependence). Syntactically, aforeach loop with index variablei intro-
ducesi. All types from the loop body are filtered using thepromote function. Assume
that τ may syntactically contain the loop variablei. We now inductively show that
promote(τ) eliminates such loop variables.

The casesτ = ∅ andτ = ξ are trivial. τ = τ1 ⊕ τ2 follows from the induction
hypothesis. The only interesting case then is(v,Xp,Ψ). If v 6= i, the result is trivially
not loop dependent (sinceflatten eliminates alli in Ψ). If v = i, then we eliminate
loop dependence locally (and again have noi in Ψ).

We must further consider our set of rewriting rules (listed e.g. in Theorem3),
though it is easy to see that those never introduce any new loop dependences.

We can now see the following:

Corollary 1. LetΓ be initial. Then for allS with Γ{S}Γ′, Γ′ is not loop dependent.

Before proceeding to consistency, a notion we previously described in Section3,
we define a more basic notion:

Definition 12. A type τ describes a valuev ∈ T, notationv :: τ , iff v = JτKD or
τ ≡ ξ.

We define consistency as pointwise description, mirroring our earlier definition
from Section3:

Definition 13. We say that a storeσ and an environmentΓ areconsistentiff, for all
x : τ ∈ Γ, σ(x) :: τ .

10.2. Correctness without Loops

For exposition, we again begin with a discussion that only considers programs with-
out loops. Section10.4then extends our discussion to prove that our treatment of loops
is also correct.

Before we can move on to the correctness proof, we require a small set of auxiliary
lemmata:

27

Lemma 3. For all Xp, the functionJXpK : P(N) → N is (a) a homomorphism, i.e.,

JXpK(A) ∪ JXpK(B) = JXpK(A⊕B)

and (b) has a fixpoint at∅, i.e.,

JXpK(∅) = ∅

Proof. Straightforward (see Figure2).

Lemma 4. For all storesD the functionJ−KD : τ → P(N) is a homomorphism, i.e.,

Jτ1KD ∪ Jτ2KD = Jτ1 ⊕ τ2KD

Proof. The proof follows from the definition ofJ−KD. Note the special-case treatment
of ξ, which yieldsξ if either case isξ.

We now show soundness in loop-free programs, first by considering XPath evalua-
tion (Lemma5), then by considering arbitrary expressions (Lemma6), and finally by
considering all non-loop statements (Lemma7).

Lemma 5 (XPath Selection Soundness). LetN :: τ , andXp one of our XPath-like
expressions (Figure2). ThenJXpK(N) :: τ ◦ Xp.

Proof. We show the property by structural induction over the structure ofτ . If τ = ξ,
the statement holds trivially. Otherwise, we haveN = JτKD .

Empty type..With τ = ∅,N = ∅, soJXpK(N) = ∅ = Jτ ◦ XpKD.

Triple type.. Assumeτ = (x,Xp′,Ψ). If satisfied(Ψ) is nottrue, then by definition of
J−K for triple types and our induction hypothesis,N = ξ orN = ∅ and the property
trivially holds. Otherwise, we know

JXp′K(σ(x)) = N

and can showJτ ◦ XpKD =

J(x,Xp ′/Xp,Ψ)KD = JXp′/XpK(σ(x))

= JXpK(JXp′K(σ(x)))

= JXpK(N)

Union type.. τ = τ1 ⊕ τ2. Thus we know that

N = Jτ1KD ∪ Jτ2KD

We can therefore findNi (i ∈ {1, 2}) such thatNi = JτiKD andN = N1 ∪ N2. By
Lemma3, it is now sufficient to show

JXpK(Ni) = Jτi ◦ XpKD

but this we know from the induction hypothesis.

Lemma 6 (Expression Typing Soundness). Let σ be consistent withΓ. Then for all
expressionse, with 〈e, σ〉 |= N andΓ ⊢ e : τ the propertyN :: τ holds.

Proof. By induction.

28

Empty set..〈∅, σ〉 |= ∅, andΓ ⊢ ∅ : ∅, with J∅KD = ∅.

Variable.. 〈x, σ〉 |= σ(x), andΓ ⊢ x : τ . Sinceσ,Γ are consistent,σ(x) :: τ by
definition.

XPath selection..〈x/Xp, σ〉 |= JXpK(σ(x)) where〈x, σ〉 |= N . In the type system,
Γ ⊢ x/Xp : τ ◦ Xp, whereΓ ⊢ x : τ .

First observe thatN :: τ . ThenJXpK(N) :: τ ◦Xp follows directly from Lemma5.

Lemma 7 (Partial Statement Typing Soundness). Let S be a program such thatS is
loop-free (i.e.,S does not contain the keywordforeach), and letσ be a store andΓ an
environment such thatσ andΓ are consistent. Now let〈S, σ〉 ⇓ σ′ andΓ{S}Γ′. Then
σ′ andΓ′ are also consistent.

Proof. By structural induction. First observe that we explicitly exclude the case of
loops. This leaves us with five cases to consider:

Skip.. 〈skip, σ〉 ⇓ σ andΓ{skip}Γ, which trivially preserves consistency.

Composition..〈S;S′, σ〉 ⇓ σ′′, where〈S, σ〉 ⇓ σ′ and 〈S′, σ′〉 ⇓ σ′′. Similarly,
Γ{S;S′}Γ′′ whereΓ{S}Γ′ andΓ′{S′}Γ′′. Using our induction hypothesis,σ′ is con-
sistent withΓ′, and thereforeσ′′ with Γ′′.

Assignments..〈x = Expr, σ〉 ⇓ σ[x 7→ N] where〈Expr, σ〉 |= N . In the type system,
Γ{x = Expr}Γ[x 7→ τ], whereΓ ⊢ Expr : τ . By Lemma6,N :: τ .

Accumulation..〈x ⇐ Expr, σ〉 ⇓ σ[x 7→ σ(x) ∪ N] where〈Expr, σ〉 |= N . In the
type system,Γ{x ⇐ Expr}Γ[x 7→ τ ′ ⊕ τ], whereΓ ⊢ Expr : τ andΓ ⊢ x : τ ′. Again
we know thatN :: τ from Lemma6, and we knowσ(x) :: τ ′ by the assumption thatσ
andΓ are consistent. With Lemma4, we then know thatσ(x) ∪N :: τ ′ ⊕ τ .

Conditionals.. The evaluation rules for conditional statements handle twocases. We
first consider the “else” branch case: if〈S2, σ〉 ⇓ σ′′ and〈Expr, σ〉 |= ∅, then

〈if (Expr) then S1 else S2, σ〉 ⇓ σ′′

Meanwhile, our typing rules specify, withΓ ⊢ Expr : τ , Γ{S1}Γ′ andΓ{S2}Γ′′,

Γ{if (Expr) then S1 else S2}(merge(Γ′,Γ′′, τ))

By Lemma6, we know that∅ :: τ . By our induction assumption, we further know that
σ′′ andΓ′′ are consistent. We must now show thatmerge(Γ′,Γ′′, τ) = Γf is consistent
with σ′′.

For τ = ξ, this is trivial, sinceΓf is pointwise either equal toΓ′ or ξ.
For τ = ∅, first note thatmerge preserves entries inΓ′ andΓ′′ if they are equiva-

lent (thereby preserving their semantics). For anyx on whichΓ′ andΓ′′ diverge, we
construct the type

τx = Γ′(x)[τ] ⊕ Γ′′(x)[¬τ]

29

We show thatσ(x) :: τx as follows: First, note thatJΓ′(x)[τ]KD ∈ {ξ,∅}, since we
know that∅ :: τ . If JΓ′(x)[τ]KD = ξ, thenJτxKD = ξ (due to the semantics of(⊕) on
ξ). Otherwise

JτxKD = JΓ′(x)[τ]KD ∪ JΓ′′(x)[¬τ]KD

= ∅ ∪ JΓ′′(x)[¬τ]KD

All that remains now is to showJΓ′′(x)K = JΓ′′(x)[¬τ]K, with τ 6= ξ. This we
show by structural induction overΓ′′(x):

• If Γ′′(x) = ξ, thenΓ′′(x)[¬τ] = ξ

• If Γ′′(x) = ∅, thenΓ′′(x)[¬τ] = ∅

• If Γ′′(x) = τ1⊕ τ2, we have identical semantics by the induction hypothesis and
by Lemma4.

• If Γ′′(x) = (x,Xp,Ψ), consider

JΓ′′(x)[¬τ]KD = J(x,Xp,Ψ ∪ {¬τ})KD = J(x,Xp,Ψ)KD

by the definition ofsatisfied, sinceJ¬τK 6= ∅.

The “then” branch case (whereτ /∈ {∅, ξ}) is analogous.

10.3. Abstract Environments and Substitution

Definition 14. An environmentΓ is abstractiff it syntactically contains a type(x,Xp,Ψ)
with x in Index∪ Id. WheneverΓ is not abstract, thenΓ is basic.

Corollary 2. Any initial environment is basic.

Next we define a special null environmentΓ0 whose purpose it is to help us in
handling loops. We do not use this environment outside of loop analysis.

Definition 15. The abstractnull-environmentΓ0 is

Γ0 = {j 7→ (j, ǫ,∅)|j ∈ Index∪ Id}

For abstract environments, we describe a notion of substitution:

Definition 16. We define the substitution of an environmentΓ into a typeτ , denoted
subst(Γ, τ), as follows:

subst(Γ, τ) =

substv(Xp, subst(Γ,Ψ),Γ(x)) τ = (x,Xp,Ψ), if x ∈ Id ∪ Index
(d,Xp, subst(Γ,Ψ)) τ = (d,Xp,Ψ), if d ∈ Doc
subst(Γ, τ1) ⊕ subst(Γ, τ2) τ = τ1 ⊕ τ2
∅ τ = ∅

ξ τ = ξ

30

with subst suitably extended on sets of types that may be prefixed by¬, and

substv(Xp,Ψ, τ) =

(y,Xp′/Xp,Ψ′ ∪ Ψ) τ = (y,Xp′,Ψ′)
substv(Xp,Ψ, τ1)
⊕substv(Xp,Ψ, τ2) τ = τ1 ⊕ τ2

∅ τ = ∅

ξ τ = ξ

We further extendsubst to operate on environments, pointwise.

We eliminate meaningless syntactic differences introduced by the above by intro-
ducing the rewriting rules

(x, ǫ/Xp,Ψ) =⇒ (x,Xp,Ψ) (xpǫ)

(x, (Xp/Xp′)/Xp′′,Ψ) ⇐⇒ (x,Xp/(Xp′/Xp′′),Ψ) (xpassoc)

To show the substitution theorem, we must make an assumptionabout our equiv-
alence operator(≡). The assumption is that the relation isnon-discriminatingand
correct, as defined below:

Definition 17. An equivalence relation(≡) on types isnon-discriminatingiff

τ ≡ τ ′ =⇒ subst(Γ, τ) ≡ subst(Γ, τ ′)

for anyΓ.

This property is a relatively weak restriction and depends on our notion of substi-
tution, which is why we could not define it earlier. In practice, it forbids non-equality
on semantically irrelevant properties such as the presenceof certain variable names or
the size of a type.

Definition 18. An equivalence relation(≡) on types iscorrect iff

τ ≡ τ ′ =⇒ JτKD = Jτ ′KD

Our first goal is thesubstitution theorem, which states that type inference on state-
ments starting withΓ, and type inference starting withΓ0 and followed up by sub-
stitutingΓ via subst , give similar results in the sense that the latter is a conservative
approximation of the former. We define

Definition 19. A type τ approximatesa typeτ ′, notationτ ⊑ τ ′, iff JτKD = ξ or
JτKD = Jτ ′KD. Similarly, an environmentΓ approximates an environmentΓ′ (Γ ⊑ Γ′)
iff for eachx, Γ(x) ⊑ Γ′(x).

Furthermore,
τ1 ⊑Γ τ

′ ⇐⇒ subst(Γ, τ1) ⊑ τ ′

Γ1 ⊑Γ Γ′ ⇐⇒ subst(Γ,Γ1) ⊑ Γ′

Observe that(⊑) is transitive.

31

Lemma 8. LetΓ ⊢ x : τ andΓ0 ⊢ x : τ0. Thensubst(Γ, τ0) ≡ τ .

Proof. Γ0 ⊢ x : (x, ǫ,∅) by definition. AssumeΓ(x) = (v,Xp,Ψ) (the other cases
follow directly from the definition ofsubst). The case ofv ∈ Doc is straightforward.
Otherwise:

subst(Γ, (x, ǫ,∅)) = substv(ǫ,∅, τ)

= substv(ǫ,∅, (v,Xp,Ψ))

= (v, ǫ/Xp,Ψ) (epsilon)

≡ (v,Xp,Ψ)

= τ

Lemma 9 (Path Appendage Substitution). Let τ ⊑Γ τ
′. Then, for anyXp, τ ◦ Xp ⊑Γ

τ ′ ◦ Xp.

Proof. We use structural induction overτ ′.

empty set..Let τ ′ = ∅. By definition,subst(Γ,∅) = ∅, and∅ ◦ Xp = ∅ both forτ
andτ ′. The same result applies toξ.

union type.. Let τ ′ = τ1 ⊕ τ2. By translation,τ = subst(Γ, τ1) ⊕ subst(Γ, τ2), which
follows from the induction hypothesis.

triple type.. Let τ ′ = (y,Xp′,Ψ). The case ofy ∈ Doc is trivial. Otherwise we must
show fromsubst(Γ, (y,Xp′,Ψ)) = τ ′′ thatsubst(Γ, (y,Xp′/Xp,Ψ)) = τ ′′ ◦Xp. This
requires further induction, this time overΓ(y). If Γ(y) = ∅ or Γ(y) = ξ, we are
done. Union types follow from the induction hypothesis and the definition ofsubstv.
Otherwise,Γ(y) = (d,Xp′′,Ψ′) for somed, Xp′′, Ψ′. Therefore

subst(Γ, (y,Xp′,Ψ)) = substv(Xp′, subst(Γ,Ψ),Γ(y))

= (d,Xp′/Xp′′,Ψ′ ∪ subst(Γ,Ψ)) (∗)

= τ ′′

From this, we can show

substv(Xp′/Xp,Ψ,Γ(y)) = substv(Xp′/Xp, subst(Γ,Ψ), (d,Xp′′,Ψ′))

= (d,Xp′′/(Xp′/Xp),Ψ′ ∪ subst(Γ,Ψ)) (xpassoc)

≡ (d,Xp′′/Xp′,Ψ′ ∪ subst(Γ,Ψ)) ◦ Xp (∗)

= τ ′′ ◦Xp

Lemma 10(Expression Substitution). Let Expr an expression,Γ′ an environment, and
Γ1 andΓ such that for allx, Γ′ ⊢ x : τ with Γ1 ⊢ x : τ1, subst(Γ, τ1) ⊑ τ .

Now letΓ′ ⊢ Expr : τ andΓ1 ⊢ Expr : τ1. Thensubst(Γ, τ1) ⊑ τ .

32

Proof. By case distinction overExpr. The case∅ is trivial, and the case of variables
holds by assumption. We only need to consider the case of XPath attachment, where
Expr= x/Xp, but this follows from Lemma9.

In the following, we utilize another set of rewriting rules:

τ ⊕ ξ =⇒ ξ (⊕ξ)

(x,Xp, {ξ} ∪ Ψ) =⇒ ξ (Ψξ)

(x,Xp, {¬ξ} ∪ Ψ) =⇒ ξ (Ψ¬ξ)

Lemma 11. Assume typesτ , τ ′. Then

1. If Jτ ′KD = ξ, thenJτKD [τ ′] = ξ

2. If Jτ ′KD = ∅, thenJτKD [τ ′] = ∅

3. If Jτ ′KD /∈ {ξ,∅}, thenJτKD[τ ′] = JτKD

Proof. Straightforward.

Lemma 12(Conditional Appendage Substitution). Let τ ⊑ τ ′ andτ1 ⊑ τ ′1. Then

τ [τ1] ⊑Γ τ
′[τ ′1]

and
τ [¬τ1] ⊑Γ τ

′[¬τ ′1]

Proof. Straightforward by Lemma11.

Lemma 13. Let JτKD = Jτ ′KD andJτ ′′KD 6= ξ.

Jτ [τ ′′] ⊕ τ [¬τ ′′]KD = JτKD = Jτ ′KD

Proof. First, considerJτKD = ξ; this case is trivial. Next, we distinguish

1. Jτ ′′KD = ∅. In this caseJτ [τ ′′]KD = ∅ but Jτ [¬τ ′′]KD = JτKD .
2. Jτ ′′KD 6= ∅, Jτ ′′KD 6= ξ. This is the inverse of the above.

Lemma 14 (Merge Substitution). AssumeΓ′
1 ⊑Γ Γ′ and Γ′′

1 ⊑Γ Γ′′. Then, for all
subst(Γ, τ1) ⊑ τ ,

subst(Γ,merge(Γ′
1,Γ

′′
1 , τ1)) ⊑ merge(Γ′,Γ′′, τ)

Proof. We show this property by showing the computed environments pointwise equiv-
alent. First, observe that since we require≡ to be non-discriminating (see Defini-
tion 17), we know thatΓ′

1(x) ≡ Γ′′
1(x) impliesΓ′(x) ≡ Γ′′(x) andΓ′(x) ⊑Γ Γ′

1(x)
by our precondition.

Otherwise,Γ′(x) 6≡ Γ′′(x). We must then show that

33

1. Γ′
1(x)[τ1] ⊕ Γ′′

1(x)[¬τ1] ⊑Γ Γ′(x)[τ] ⊕ Γ′′(x)[¬τ] It is sufficient to show that

Γ′
1(x)[τ1] ⊑Γ Γ′(x)[τ] and

Γ′′
1(x)[¬τ1] ⊑Γ Γ′(x)[¬τ]

which follow from Lemma12.
2. Γ′

1(x)[τ1] ⊕ Γ′′
1 (x)[¬τ1] ⊑Γ Γ′(x) whereΓ′(x) ≡ Γ′′(x). If any of τ1, Γ′

1(x),
Γ′′

1(x) have the semantics ofξ aftersubst, then so has the result and we are done.
Otherwise the desired property follows from Lemma13.

Theorem 1(Substitution). LetΓ{S}Γ′, andΓ0{S}Γ1. Thensubst(Γ,Γ1) ⊑ Γ′.

Proof. Proof by structural induction overS. First, observe thatsubst(Γ,Γ0) = Γ (via
extension of Lemma8, thus handlingskip). Sequencing is trivial from the induction
hypothesis. This leaves four cases: assignment and accumulation follow directly from
Lemma10, while conditionals follow from Lemma14.

loop.. Consider the caseS = foreach i in Expr{B }. LetΓ0{B}Γ1 and assume (with-
out loss of generality) that all types inΓ1 are predicate-normal. LetΓf = flatteni(Γ1).
Furthermore let

Γ ⊢Expr : τ

Γ0 ⊢Expr : τ0

By Lemma8, we knowτ0 ⊑Γ τ . We must now show, for eachx, r, τ ′ with
Γf ⊢ x : τ ′,

promoteΓ0,τ0,i(x, r, τ
′) ⊑Γ promoteΓ,τ,i(x, r, τ

′)

These only differ in the indices topromote. Thus, we only need to consider (via induc-
tion) two cases:

1. τ ′ = (x, ǫ,∅). Here we must show

Γ0(x) ⊑Γ Γ(x)

which we know from Lemma10.
2. τ ′ = (i,Xp′,Ψ′) follows directly from Lemma10and Lemma13.

Finally, by Lemma14,

merge(promoteΓ0,τ0,i(Γ1),Γ0, τ0) ⊑Γ merge(promoteΓ,τ,i(Γ1),Γ, τ)

34

10.4. Correctness with Loops

Definition 20. A variablex has a fixpointτ in S iff with Γ0{S
k}Γk, Γk ⊢ x : τ , for

anyk ≥ 1, whereS1 = S andSn+1 = S;Sn.

Definition 21. A typeτ is stableiff it falls into one of the following categories:

1. τ = ∅

2. τ = (d,Xp,Ψ), d ∈ Doc, and for allτ ′, ¬τ ′ in Ψ, τ ′ is stable
3. τ = τ1 ⊕ τ2 andτ1 andτ2 are both stable

Lemma 15. AssumeΓ0{S}Γ1 andΓ1 ⊢ x : τ . If τ is stable,x has a fixpointτ in S.

Proof. With Γk{S}Γk+1, we know from the substitution theorem that

subst(Γ1,Γk) ⊑ Γk+1

so it is sufficient to show thatsubst(Γ, τ) = τ . This follows from straightforward
structural induction over the structure ofτ .

Definition 22. A typeτ is i-stable iff one of the following cases holds:

1. τ is stable
2. τ = τ1 ⊕ τ2 and bothτ1 andτ2 arei-stable
3. τ = (i,Xp,Ψ) and for allτ ′, ¬τ ′ in Ψ, τ ′ is i-stable.

Further, a typeτ is i,x-stable iff one of the following cases holds:

1. τ is i-stable
2. τ = τ1 ⊕ τ2 and bothτ1 andτ2 arei,x-stable
3. τ = (x, ǫ,∅)

Lemma 16(Statement Typing Soundness). Letσ be a store consistent withΓ, and let
Γ{S}Γ′ and〈S, σ〉 ⇓ σ′. Thenσ′ is consistent withΓ′.

Proof. We follow the proof of Lemma7, except for also handling loops.
Consider the following:

• a loopS = foreach i in Expr { B }

• a typing environmentΓ consistent with a storeσ,

• σ′ as per〈S, σ〉 ⇓ σ′,

• Γ0{S}Γs, and

• Γf = flatteni(Γs).

Also assumeΓ ⊢ Expr : τ and 〈Expr, σ〉 |= N . If N is empty, thenΓ andσ′ are
consistent. Otherwise, letN = {n1, . . . , nl} and define

• σ0
u = σ

35

• 〈B, σk〉 ⇓ σk+1
u for all k ∈ {1, . . . , l}

• σk = σk
u[i 7→ {nk}]

• σ′ = σl+1
u [i 7→ ∅]

Note that〈S, σ〉 ⇓ σ′. Theσk give us a means for referring to intermediate compu-
tational stages, but we do not have a typing environment thatis consistent with them.
To achieve this, we define a family of freshDoc variablesIk such thatD(Ii) = {ni}
(without loss of generality) for suitablei, and define

• Γ0
u = Γ

• Γk{B}Γk+1
u for all k ∈ {1, . . . , l}

• Γk = Γk
u[i 7→ (Ik, ǫ,∅)]

Observe:

1. Fork ∈ {1, . . . , l}, Γk andσk are consistent by our induction hypothesis
2. J(I1, ǫ,∅)KD ∪ . . . ∪ J(Il, ǫ,∅)KD = N

and, by Lemma6,N :: τ .
To show our typing treatment of loops correct, it is therefore (by Observation 1

above) sufficient to show
promoteΓ,τ,i(Γf) ⊑ Γl

For each variablex, considerΓs ⊢ x : τ ′ andΓl ⊢ x : τ l. We show that

promoteΓ,τ,i(x, rec(x, τ
′), flatteni(τ

′)) ⊑ τ l

Observe thatτ ′ is i,x-stable iffflatteni(τ
′) is i,x-stable, and thatpromote maps allτ ′

that are noti,x-stable toξ. Without loss of generality, we then only need to prove the
above property for predicate-normali,x-stableτ ′. We employ structural induction over
τ ′′ = τ ′. If τ ′′ is stable, we have the desired property by Lemma15; with union, the
property follows from the induction hypothesis. We are thenleft with the following
cases:

1. τ ′′ = (x, ǫ,∅). From the substitution lemma we see by straightforward induction
thatτ l = (x, ǫ,∅).

2. τ ′′ = (i,Xp,Ψ) andτ ′ syntactically contains(x, ǫ,∅) (i.e., rec(x, τ ′)). To sim-
plify our exposition, we consider two separate cases forΨ:
(a) All types inΨ are stable. In that case, the substitution lemma shows us that,

inductively,
τ l = (I1,Xp,Ψ) ⊕ . . .⊕ (Il,Xp,Ψ)

which (by Observation 2) is equivalent to(τ ◦Xp)[Ψ], so the desired property
follows from Lemmas12and9.

36

(b) All types inΨ arei-stable but not all are stable. Then, without loss of gener-
ality, Ψ = {(i,Xp′,∅)} ∪ Ψ′ (analogously with negation).

τ l = (I1,Xp,Ψ′ ∪ {(I1,Xp′,∅)}) ⊕ . . .⊕ (Il,Xp,Ψ′ ∪ {(Il,Xp′,∅)})

which is (by Observation 2) equivalent to(τ ◦ [Xp′] ◦ Xp)[Ψ′]; again the
desired property follows from Lemmas12and9.

If N 6= ∅, thenΓ andσ′ are consistent, otherwisepromoteΓ,τ,i(Γf) andσ′ are
consistent. As we showed in the correctness proof for conditionals in Lemma7, this
implies thatmerge(promoteΓ,τ,i(Γf),Γ, τ) andσ′ are consistent.

Typing soundness is then straightforward:

Theorem 2(Typing Soundness). Assume a programP , an initial storeσ and an initial
environmentΓ.

Now let〈P, σ〉 ⇓ σ′ andΓ{P}Γ′. Then

1. σ′ is consistent withΓ′

2. Γ′ is not loop-dependent.

Proof. By Lemma16and Corollary1.

Further, all of our rewriting rules preserve semantics:

Theorem 3. The rewriting rules from Figure6 are correct.

Proof. (comm), (assoc), (empty), (idem) arise trivially from the semantics of (lifted) set
union. The others follow from the definition of XPath semantics, with (join) following
directly from Lemma13. We show two of the more interesting cases below:

Consider (selfdep):

(x,Xp, (x,Xp,Ψ)) =⇒ (x,Xp,Ψ)

We must consider three cases:

1. J(x,Xp,Ψ)KD = ∅, but thenJ(x,Xp, (x,Xp,Ψ))KD = ∅.
2. J(x,Xp, (x,Xp,Ψ))KD = ξ. Observe that this means that, forτ or ¬τ in Ψ,

JτKD = ξ. But thenJ(x,Xp, (x,Xp,Ψ))KD = ξ.
3. J(x,Xp, (x,Xp,Ψ))KD /∈ {∅, ξ}, thenJ(x,Xp, (x,Xp,Ψ))KD = J(x,Xp,∅)KD.

Consider (flat-1):

(x,Xp, {(y,Xp′,Ψ′)} ∪ Ψ) =⇒ (x,Xp, {(y,Xp′,∅)} ∪ Ψ ∪ Ψ′)

Again we consider three cases:

1. satisfied(Ψ′) = true. Then

J(x,Xp, {(y,Xp′,Ψ′)} ∪ Ψ)KD = J(x,Xp, {(y,Xp′,∅)} ∪ Ψ)KD

= J(x,Xp, {(y,Xp′,∅)} ∪ Ψ ∪ ∅)KD

= J(x,Xp, {(y,Xp′,∅)} ∪ Ψ ∪ Ψ′)KD

37

2. satisfied(Ψ) = false. Then

J(x,Xp, {(y,Xp′,Ψ′)} ∪ Ψ)KD = J(x,Xp, {(y,Xp′, {∅})} ∪ Ψ)KD

= J(x,Xp, {(y,Xp′, {∅})} ∪ Ψ ∪ {∅})KD

= J(x,Xp, {(y,Xp′,∅)} ∪ Ψ ∪ {∅})KD

= J(x,Xp, {(y,Xp′,∅)} ∪ Ψ ∪ Ψ′)KD

3. satisfied(Ψ) = ξ. Then both expressions have the semantics ofξ, analogously to
the previous points.

38

