
MetaDL: Analysing Datalog in Datalog
Alexandru Dura

Dept. of Computer Science
Lund University
Lund, Sweden

alexandru.dura@cs.lth.se

Hampus Balldin
Dept. of Computer Science

Lund University
Lund, Sweden

Christoph Reichenbach
Dept. of Computer Science

Lund University
Lund, Sweden

christoph.reichenbach@cs.lth.se

Abstract
Datalog has emerged as a powerful tool for expressing static
program analyses. Program analysis researchers have built
nontrivial code bases in Datalog, but tool support for work-
ing with Datalog itself has been lacking. In this paper, we
introduce MetaDL, a language extension to Datalog that
enables source-level Datalog program analysis within Data-
log. We describe several program analyses implemented in
MetaDL and report on initial experiences. Our findings show
that the language is effective for real-life Datalog analysis
and can simplify working with Datalog source code.

CCS Concepts • Software and its engineering→Auto-
mated static analysis; Constraint and logic languages;
Domain specific languages; • Theory of computation →
Pattern matching;

Keywords Datalog, Domain-Specific Languages, Pattern
Matching, Static Analysis
ACM Reference Format:
Alexandru Dura, Hampus Balldin, and Christoph Reichenbach.
2019. MetaDL: Analysing Datalog in Datalog. In Proceedings of

the 8th ACM SIGPLAN International Workshop on the State Of the

Art in Program Analysis (SOAP ’19), June 22, 2019, Phoenix, AZ, USA.

ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3315568.
3329970

1 Introduction
Declarative programming is a powerful approach for pro-
gram analysis [4], and Datalog is playing a key role in this
development [3], especially for points-to analysis [2].
Datalog offers concise notation and eliminates the need

for manual management of worklists [11], a common feature
in imperative program analyses. In imperative implementa-
tions, when multiple analyses are mutually supportive [7],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOAP ’19, June 22, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6720-2/19/06. . . $15.00
https://doi.org/10.1145/3315568.3329970

1 EDB("direct-superclass.csv", 'Superclass).
2 EDB("direct-interface.csv", 'ImplementsInterface).
3

4 Superty(t, p) :- Superclass(t, p).

5 Superty(t, p) :- ImplementsInterface(t, p).

6 Superty(t, a) :- Superty(t, super), Superty(super, a).

7

8 OUTPUT('Superty).
Figure 1. Datalog application code example: compute the
transitive supertype relation for a Java-like language.

each component analysis must interact with other analyses’
worklists, which breaks modularity and complicates develop-
ment and experimentation. Datalog’s semi-naïve evaluation

strategy [10] automates worklist management, freeing devel-
opers to focus on analysis logic.

Today, researchers have built Datalog-based analyses with
thousands [8] or even tens of thousands [2] of rules. Under-
standing and working with such code bases can be challeng-
ing, as Datalog has no notion of data hiding or modularity:
all information is global by design.
To help developers manage Datalog code bases, we are

developing MetaDL, a program analysis tool for Datalog in
Datalog. MetaDL programs can read other Datalog programs-
under-analysis into queryable Datalog relations and use syn-
tactic pattern matching to access these relations concisely.
For example, we might compute a relation Arity(pn,a), re-
lating predicates pn to their parameter count (arity) a with
rules like the following (see Section 3 for the full example):
Arity(pn, $i) :- [. . . , $p(. . . , $i : $x), . . . :-], ID($p, pn).
This rule matches metavariables ($p, $i , $x) to code from the
program under analysis, for every instance of the syntactic
pattern enclosed in square brackets. Here, $p matches occur-
rences of Datalog head literals (predicates with arguments)
in a program, $x matches the right-most argument in each
matching literal, and $i is the numeric index of $x in the
argument list to $p. The gaps (. . .) describe sequences whose
content we ignore. Outside the pattern, the literal ID($p, pn)
extracts the name of the predicate bound to $p into pn. Sim-
ilar queries make it easy to e.g., find all locations in which
a predicate occurs on the left-hand side of a rule, identify
all predicates that don’t contribute to interesting output, or
identify inefficient code or refactoring opportunities.

https://doi.org/10.1145/3315568.3329970
https://doi.org/10.1145/3315568.3329970
https://doi.org/10.1145/3315568.3329970

SOAP ’19, June 22, 2019, Phoenix, AZ, USA Alexandru Dura, Hampus Balldin, and Christoph Reichenbach

2 Background
MetaDL is an extension of Datalog, a declarative language
that computes relations, effectively database tables without
duplicate rows (i.e., with set semantics), from other relations.
Each relation is bound to a predicate symbol that represents
the relation in the program, and in the following we will use
the two terms interchangeably.

As an example, consider Figure 1, which shows a program
that computes the table of all subtypes given input data
that describes a program in a Java 1.4-style language. Line 1
loads a relation from the file direct-superclass.csv into
a relation with predicate symbol Superclass, and line 2 does
the same for ImplementsInterface.
Line 4 then specifies that any pair ⟨t, p⟩ that is in the

relation Superclass must also be in the relation Superty. Such
rules (or horn clauses) take the general form

P1(x1) :- P2(x2), . . . , Pk (xk).
where the Pi are predicate symbols and the x j are sequences
of variables and constants. Semantically, such rules are right-
to-left implications: for all substitutions ρ from variables
in x2 . . . xk to constants, if we can show that the body lit-

erals P2(ρ(x2)), . . . , Pk (ρ(xk)) are true, then the head literal
P1(ρ(x1)) must also be true. To show that a literal is true,
we either look it up in tables loaded from disk (as in lines 1
and 2) or (recursively) derive it from any of the rules in the
program. When k = 1, P1(x1) is always true. In this case, we
can omit the ‘:-’ symbol, as in lines 1 and 2.

Lines 4 and 5 therefore copy all tuples ⟨t, p⟩ from Super-
class and ImplementsInterface into Superty, computing
the union of these two relations. Line 6 then computes the
transitive closure of the Superty relation.

Finally, line 8 specifies that the computed Superty relation
should be written to disk once computed.

Likemost Datalog systems,MetaDL adds features for arith-
metic, string operations, multiple head literals, and negation.
Negation introduces a semantic complication, as it al-

lows us to write self-contradictory rules such as A(x) :-
NOT(A(x)). Contradictions can also arise through longer
chains of reasoning. We follow existing tools (and mathe-
matical tradition) in requiring negation to not be recursive,
i.e., whenever predicate P depends on a negated predicate
Q , we must be able to fully compute Q before computing P .
This process is called stratification (Section 4.3).

3 MetaDL
MetaDL adds a number of language features to simplify pro-
gram analyses of Datalog programs. Consider the program
in Figure 2, which checks that all predicates in the input
program have the same arity and reports all disagreements
in the relation ArityError.

Line 1 illustrates the IMPORT pseudopredicate, which loads
an external Datalog program into a single predicate (Program).
Pseudopredicates, which also include EDB and OUTPUT

1 IMPORT("input-program.dl", 'Program).
2

3 analyze('Program) {

4 Arity(p_name, a, loc) :-

5 [...:- ..., $p(...,$i:$x),],

6 BIND(a, $i+1), ID($p, p_name), SRC($p, loc).

7 Arity(p_name, a, loc) :-

8 [...:- ..., NOT($p(...,$i:$x)),],

9 BIND(a, $i+1), ID($p, p_name), SRC($p, loc).

10 Arity(p_name, a, loc) :-

11 [..., $p(...,$i:$x), ...:-],

12 BIND(a, $i+1), ID($p, p_name), SRC($p, loc).

13 Arity(p_name, a, loc) :-

14 [..., $p(...,$i:$x),],

15 BIND(a, $i+1), ID($p, p_name), SRC($p, loc).

16 }

17 ArityError(p, loc_i) :- Arity(p, i, loc_i),

18 Arity(p, j, loc_j), NEQ(i, j).

19 OUTPUT('ArityError).
Figure 2. Program to check that the arities of predicates
used within a program are consistent.

from Figure 1, follow the syntax of Datalog predicates but
have special semantics (Section 3.2). As a result of Line 1,
the predicate Program represents a complex relation that
encodes the structure of the input program (Section 3.3).
While it is possible to analyse Datalog programs by di-

rectly accessing this representative relation, we provide a
more concise syntax for program access in the form of syn-
tactic patterns. From the programmers’ perspective, a pattern
describes the syntax that they want to match; our system
rewrites this pattern into relational Datalog constraints.

For example, Line 5 uses the pattern

[...:- ..., $p(...,$i:$x),]

This pattern will match any positive (non-negated) Datalog
literal that occurs on the right-hand side of a Datalog rule.
Names preceded by dollar signs are metavariables. If we
apply this rule to the code in Figure 1, $p will match the
four literals occurring on the right hand side of rules, $x
will match their right-most argument, and $i will match
the index of the right-most argument in the parameter list
(always 1 in that example, since our offsets start at 0 and
all relations in Figure 1 are binary). For instance, in Line 6
of Figure 1, the above pattern would match twice, once for
each Superty literal on the right hand side, and $x would
match the variables super (for Superty(t, super)) and a
(for Superty(super, a)).

Returning to the analysis in Figure 2, we now increment $i
by one and assign the result to a (BIND(a, $i+1)). Finally,
we read the name of the predicate $p into p_name. (using
ID($p, p_name)) and its source location into $loc (using
SRC($p, loc)).

MetaDL: Analysing Datalog in Datalog SOAP ’19, June 22, 2019, Phoenix, AZ, USA

We provide three more rules that extract arity from the re-
maining sources of arity information: negated literals (line 7),
head literals (line 10; such literals cannot be negated) and
head literals in rules that omit the :- symbol (line 14).

We give a full overview of our pattern rules in Section 3.4.
MetaDL programs can process multiple input files at once

(e.g., for code differencing or dependency tracking). We pro-
vide analyze(’P) { ... } blocks (lines 3–16), where P is
a representative relation. Within the curly braces of such a
block, the scope of all patterns and related pseudopredicates
(e.g., ID) is set to exactly the program(s) represented by P .

3.1 Types
MetaDL has a simple static type system with type inference
(Section 4.4). Each predicate P must have a fixed arity, and
each argument must be of exactly one type. We support
three types: Int for integers, String for strings, and PredRef

for predicate references of the form ’P (where P is a predicate).
We use such predicate references for input and output, but

they can also communicate information between programs
under analysis and MetaDL analyses (Section 4.2).

We represent the AST nodes of programs under analysis as
integers (Section 3.3). Metavariables in patterns thus always
bind to an integer, and developers can use pseudopredicates
to extract information from these node IDs.

3.2 Pseudopredicates
MetaDL provides several pseudopredicates. EDB, IMPORT,
and OUTPUT, which interface with the harddisk, require
constant parameters. Several other pseudopredicates (EQ,
NEQ, GT, . . .) test for (in)equalities. The special pseudo-
predicate BIND allows evaluating expressions. For example,
BIND(x, y + 2 * z) will compute y+ (2 · z) and bind the result
to x. The first argument to BIND must be a variable.

The remaining pseudopredicates function like regular Dat-
alog predicates, but only within analyze blocks:

• ID(n, name) relates AST nodes n to their names, for
nodes with names (i.e., predicates and variables).

• SRC(n, loc) relates AST nodes n and their source
locations loc.

• STR(v, s) and INT(v, i) relate arguments to their
constant string or integer values.

• REF(v, n) extracts the predicate symbols from predi-
cate references.

• EXPR(expr, i, subexpr) relates expressions expr,
which can occur in the BIND pseudopredicate, and
their subexpressions subexpr at (zero-based) index i.
For instance, the expression ‘x + 7’ will have subex-
pression ‘x’ at index 0 and ‘7’ at index 1.

3.3 Relational Representation of Datalog Programs
Figure 3 captures the in-memory representation of the AST
produced by parsing the following Datalog rule:

Superty(t, ancestor) :-

Superty(t, super), Superty(super, ancestor).

When importing an AST, we assign every node in the AST
a unique identifier and relate these node IDs in predicates
whose names reflect the MetaDL AST (e.g. Rule, List, Atom,
Variable, etc.). The relations for terminal nodes (e.g., Vari-
able) relate node IDs to node contents (e.g., the variable
name), while relations for nonterminal nodes capture the
AST structure. Our encoding scheme for AST nodes uses
triples ⟨p, i, c⟩, where p is the parent node ID, i is the (zero-
based) child index, and c is the child node. With this scheme,
the AST in Figure 3 is represented by the tables in Figure 4.

This representation uses a nontrivial number of relations.
This in turn is at odds with our desire to provide a simple
interface to the IMPORT pseudopredicate, so we currently
compress all such relations into a single relation and decom-
press that relation again for processing analyze blocks.

3.4 Pattern Matching for Analysing Datalog
We currently support two forms of patterns: one for match-
ing rules with the ‘:-’ symbol, and one for rules without. The
language accepted inside the patterns is Datalog extended
with metavariables, index metavariables, and gaps.

Metavariables bind to predicate symbols, variables, con-
stants (including predicate references), and expressions, and
always start with the symbol ‘$’. Metavariables are the sole
mechanism for directly connecting information from a pat-
tern to literals outside of the pattern, where they behave
identically to regular variables.
When a metavariable $x is part of a sequence of literals

or parameters, it has an associated index that is accessible
via an index metavariable, prefixed by ‘:’ (e.g., $i:$x).

Metavariables allow limited variability in our patterns;
for instance, the partial pattern $p($v, $w) will match any
positive literal with two arguments of any kind. However,
metavariables by themselves are insufficient to match literals
with an unknown number of arguments , or rules with an
unknown number of literals. Therefore, we also allow gaps.

In their simplest form (e.g., $p(...)), gaps specify that we
permit any number of elements in an argument list or a list
of literals. When gaps are adjacent to metavariables or literal
Datalog code, they also relax positioning constraints.
If an element is adjacent to a gap on only one side, then

the element’s position is fixed relative to its neighbouring
element. For example, [$p($v, ..., $w).] matches a single
literal and binds $v to the first parameter and $w to the last
parameter. If the matched literal is unary, then $v = $w.
If an element has gaps both to its left and to its right, its

position is unconstrained in the list that it is a part of. This
is a conscious design decision to allow patterns such as

[..., P(...), ..., Q(...),]

to match predicates P and Q in any order (even if Q appears be-
fore P). If the order is significant, programmers can use index

SOAP ’19, June 22, 2019, Phoenix, AZ, USA Alexandru Dura, Hampus Balldin, and Christoph Reichenbach

Superty (t , ancestor) :- Superty (t , super), Superty (super , ancestor).

4
PredicateSym

6
Variable

7
Variable

10
PredicateSym

12
Variable

13
Variable

15
PredicateSym

17
Variable

18
Variable

5
List

11
List

16
List

3
Atom

9
Atom

14
Atom

8
List

2
List

1
Rule

Figure 3. In-memory AST representation of a Datalog rule.

Rule
1 0 2
1 1 8

Atom
3 0 4
3 1 5
9 0 10
9 1 11
14 0 15
14 1 16

List
2 0 3
5 0 6
5 1 7
8 0 9
8 0 14
11 0 12
11 1 13
16 0 17
16 1 18

PredicateSym
10 "Superty"
15 "Superty"
4 "Superty"

Variable
12 "t"
13 "super"
17 "super"
18 "ancestor"
6 "t"
7 "ancestor"

Figure 4.Datalog table representation of the AST in Figure 3.

metavariables (e.g., in [...,$i:P(...),..., $j:Q(...),....])
to enforce the order by requiring the inequality LT($i, $j).

3.4.1 Relational Representation of Patterns
We implement pattern matching by rewriting patterns into
conjunctions of Datalog literals. The translation scheme is
analogous to generating representative relations of imported
programs (Section 3.3), with the main differences being that
we (a) preserve metavariables throughout the translation
and (b) introduce fresh variables for parts of the patterns
that we do not wish to match (as part of gaps).

For example, recall this pattern from Figure 2:
[...:- ..., $p(...,$i:$x),]

We translate this pattern to the following conjunction:
1 Rule(v0, 0, v1), List(v1, 0, v4),

2 Rule(v0, 1, v2), List(v2, vj, v6), Atom(v6, 0, $p),

3 Atom(v6, 1, v3), List(v3, $i, $x),

4 BIND(v8, $i + 1), NOT(ListProj(v3, v8))

5 # Helper predicate:

6 ListProj(n, i) :- List(n, i, ignore).

All the variables (excluding metavariables) in lines 1–4 are
fresh. Line 1 binds v0 to a rule that has at least one predicate
in its head. Line 2 asserts that the same rule v0 has a child
at index vj, and that the child must be an atom v6 with
predicate symbol $p. Here, vj is an implicit index variable.
Line 3 binds $x to a term at position $i in the list of terms in
atom v6. Line 4 ensures that that term has no right sibling
(at offset $i + 1), as our example pattern requires $x to be in
a rightmost position. ListProj is a helper predicate (line 6).

4 Applications
To examine the utility of our approach, we have built sev-
eral program analyses in MetaDL, of which we report on
five: arity checking (Figure 2), Cartesian product checking,
deprecation checking, stratification, and type inference.

4.1 Checking for Cartesian Products
State-of-the-art Datalog engines like Soufflé [8] use an eager
evaluation strategy. This means that rules such as

P(x, y) :- Q(x), R(y) .

can be wasteful: given j elements in Q and k elements in
R, we must compute a table of j × k elements. If we instead
eliminate the above rule and replace P(x,y) on the right-
hand side of all remaining rules by Q(x), R(y), we can avoid
this cost.

We have written a static checker that detects such projec-
tions, reporting any that are consistent across all left-hand
side occurrences of a given predicate symbol. Our checker
reports both light warnings (one projection) and serious
warnings (two or more projections), using a total of 22 rules
and 5 syntactic patterns. To illustrate, its final rule is:

1 CartesianProjectionWarning(p_name, $i, $j) :-

2 VarProjectedN(p_name, $i, q_name),

3 VarProjectedN(p_name, $j, q2_name),

4 NOT(ProjectionIndicesSharedN(p_name, $i, $j)).

with VarProjected determining that in all rules with the
predicate named p_name on their left hand side, index $i
(resp. $j) a projection from one fixed index of right-hand-
side relation q_name (resp. q2_name), further implying that
the right-hand-side relation is not filtered in any way. The
last line ensures that $i and $j are not only distinct but also
always come from different predicates on the right-hand
side; this check is slightly more fine-grained than ensuring
that q_name and q_name2 are distinct and will also capture
e.g. A(x, y) :- B(x), B(y).

We have tested this checker on a self-contained miniature
version of DOOP (170 rules) but found no interesting issues.
We expect that such static checkerswill bemost useful during
development of new Datalog code.

4.2 Deprecation Checking
Predicate references allow us to implement a light-weight
Java-style deprecation checker:
Depr(p) :- [Deprecated($p) .], REF($p, p).

Warn(p, l) :- [...:- ..., $p(...),],

MetaDL: Analysing Datalog in Datalog SOAP ’19, June 22, 2019, Phoenix, AZ, USA

1 analyze(’Program) {

2 DirectDep(p_name, q_name) :-

3 [...,$p(...),... :- ...,$q(...),],

4 ID($p, p_name), ID($q, q_name).

5

6 DirectDepNeg(p_name, q_name),

7 DirectDep(p_name, q_name) :-

8 [...,$p(...),... :- ...,NOT($q(...)),],

9 ID($p, p_name), ID($q, q_name).

10 }

11 Dep(p_name, q_name) :- DirectDep(p_name, q_name).

12 Dep(p_name, q_name) :- Dep(p_name, rn),

13 DirectDep(rn, q_name).

14

15 SameStratum(p_name, q_name) :- Dep(p_name, q_name),

16 Dep(q_name, p_name).

17 ParentStratum(p_name, q_name) :-

18 DirectDep(p_name, q_name),

19 NOT(SameStratum(p_name, q_name)).

20

21 Error(p_name, q_name) :- DirectDepNeg(p_name, q_name),

22 SameStratum(p_name, q_name).

Figure 5. Stratification of Datalog in MetaDL.

ID($p, p), Depr(p), SRC($p, l).

If Deprecated(’P). occurs in a program, positive refer-
ences to P in the body will trigger a warning.

4.3 Stratification
Stratification is part of semi-naïve Datalog evaluation. The
purpose of stratification is to (i) ensure that no relation P
depends on the negation of P , or the negation of a predicate
that depends on P , and (ii) construct an evaluation order
over all predicates that will produce the correct result.

Stratification computes a list of strata, where each stratum
is a set of predicate symbols that depend only on the same
stratum and on all previous strata. A stratum contains at
least one predicate but may contain more, if the predicates
have mutual dependencies. Figure 5 gives a stratification
algorithm for standard Datalog, in MetaDL.

In this figure, we first compute direct dependencies (both
positive and negated) between predicates, then the transi-
tive closure of these dependencies, Dep. We then compute
which predicates must be evaluated in the same stratum
due to circular dependencies, SameStratum, and the set of
predicates that need to be evaluated in the parent stratum
of the stratum represented by a predicate, ParentStratum.
Finally, we check that no stratum has a negated dependency
on itself and report violations in Error.

4.4 Type Inference
A MetaDL predicate is well-typed iff each of its arguments
is used consistently with exactly one of the three MetaDL

1 analyze(’Program) {

2 # Infer types from ground terms in facts (strings)

3 PredType(p_n, $i, "String") :-

4 [...,$p(...,$i:$v,...),... .], ID($p, p_n), STR($v, x).

5 — analogous rules omitted —
6 # Propagate types through variables

7 PredType(q_name, $j, t) :-

8 [...:- ..., $p(...,$i:$v,...), ...,

9 $q(...,$j:$w, ...),],

10 ID($p, p_name), ID($q, q_name),

11 ID($v, v_name), ID($w, w_name),

12 EQ(v_name, w_name), PredType(p_name, $i, t).

13 — analogous rules omitted —
14 # Compute the term indices for each predicate

15 TermIndex(p_name, $i) :-

16 [..., $p(...,$i:$v,...),], ID($p, p_name).

17 — analogous rules omitted —
18 }

19 IsTyped(p_name, i) :- PredType(p_name, i, x).

20 IncompleteType(p_name, i) :- TermIndex(p_name, i),

21 NOT(IsTyped(p_name, i)).

22 InconsistentType(p_name, i) :- PredType(p_name, i, t1),

23 PredType(p_name, i, t2), NEQ(t1, t2).

Figure 6. Highlights of Datalog type inference in MetaDL.

types (Int, String, PredRef). A MetaDL program is well-typed
iff all predicates that occur in it are well-typed.

MetaDL does not have special syntax for type declarations,
but developers can set types via rules that never trigger:
P(0, "", 'P) :- NEQ(0, 0).

The above ensures that P is of type ⟨Int, String, PredRef⟩.
In Figure 6 we present part of an implementation of type

inference. PredType(p, i, τ) defines a relation between each
predicate symbol p, argument index i , and type τ that may
occur at this argument index. Lines 2–4 show how we ex-
tract type information from string constants; the process is
analogous for other constants and other locations in which
literals occur. Lines 7–12 show how we propagate type infor-
mation across body literals; the process for head literals is
analogous. Finally, predicate IncompleteType(p, i) (lines 20)
checks if predicate p at parameter index i lacks type infor-
mation, and predicate InconsistentType (lines 22) checks
if it has contradictory type information.

Type inference in rules containing the BIND and EQ pseu-
dopredicates and arithmetic expressions can be described
similarly, using the EXPR pseudopredicate.

5 Implementation
Our implementation of MetaDL is based on the Jast-Add [4]
extensible compiler generator. It consists of a ‘baseline’ Dat-
alog implementation and a separate MetaDL language ex-
tension module that relies on JastAdd’s rewriting and non-
terminal attribute features to transform analyze blocks and
patterns to plain Datalog.

SOAP ’19, June 22, 2019, Phoenix, AZ, USA Alexandru Dura, Hampus Balldin, and Christoph Reichenbach

MetaDL Soufflé

analysis.mdl

target.dl

analysis-souffle.dl

target-facts.csv out.csv

Figure 7. Evaluation strategy forMetaDLwhen using Soufflé
as external Datalog engine.

Our system has its own Datalog backend, using the naïve
evaluation strategy [10]. We only use this mechanism for the
pseudopredicate IMPORT, then defer to an external Datalog
backend (currently the Soufflé system [8]). We serialise the
current rule set and all internal facts (especially our repre-
sentative relations) into a backend-specific format, run the
backend engine (Figure 7), then read back the results.
We have experimented with our analyses on our own

code, on a self-contained miniature version of DOOP (437
lines, 170 rules) that we have ported to MetaDL, and on tests
and synthetic benchmarks. For example, our checker from
Section 4.1 can analyse the miniature DOOP in around two
seconds; growing the target program ten-fold (1700 rules)
still allows us to finish in under ten seconds. Despite being
in an early stage of development, our tool is practical for
analysing medium-sized code bases.

6 Related Work
Program analysis in Datalog has been an area of active re-
search at least since Whaley and Lam [12], though their
system required substantial manual representation tuning.
Later systems based on LogicBlox [1, 2] and Soufflé [8] scaled
more easily. While program analysis in the latter systems has
focussed on backend properties, the CodeQuest system [3]
demonstrated the formalism’s utility for front-end analy-
ses. Unlike ours, the above systems targeted Java or similar
general-purpose languages.
The use of pattern matching has a long tradition in the

functional programming community, though we are not
aware of support for gaps and indices for program analysis in
the same vein as our system. Coccinelle [6] supports ranges
(including recursive nesting) for analysing C programs.

Analysing programs of a given language within the same
language was a central topic in LISP and is also supported in
other languages, primarily with the goal of supporting meta-
programming [5, 9]. While our goal is to support similar
facilities in MetaDL in the future, the need for stratification
raises hurdles towards offering full metacircularity.

7 Conclusions and Future Work
We have presented MetaDL, a Datalog extension for load-
ing, analysing, and syntactic pattern-matching over Datalog
programs. Our initial results show that the system can con-
cisely express a variety of interesting program analyses and
run them in a practically useful time frame. In future work,

we plan to extend our pattern matching support to allow
metavariables to match more syntactic constructs (including
entire rules) and enable Datalog code transformation, using
an extended version of our quotation syntax.

Acknowledgments
This work was partially supported by Wallenberg Artificial
Intelligence, Autonomous Systems and Software Program
(WASP) funded by Knut and Alice Wallenberg Foundation.
We thank the anonymous reviewers and the members of
the Software Development and Environments group at Lund
University for their valuable feedback.

References
[1] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan

Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn.
2015. Design and Implementation of the LogicBlox System. In Pro-

ceedings of the 2015 ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD ’15). ACM, New York, NY, USA, 1371–1382.
https://doi.org/10.1145/2723372.2742796

[2] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative
specification of sophisticated points-to analyses. In Proceedings of

OOPSLA ’09. ACM, New York, NY, USA, 243–262. https://doi.org/10.
1145/1640089.1640108

[3] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. 2006. CodeQuest:
Scalable Source Code Queries with Datalog. In Proceedings of the 20th

European Conference on Object-Oriented Programming (ECOOP’06).
Springer-Verlag, Berlin, Heidelberg, 2–27. https://doi.org/10.1007/
11785477_2

[4] Görel Hedin and Eva Magnusson. 2003. JastAdd: An Aspect-oriented
Compiler Construction System. Sci. Comput. Program. 47, 1 (April
2003), 37–58. https://doi.org/10.1016/S0167-6423(02)00109-0

[5] Ralf Lämmel and Simon Peyton Jones. 2005. Scrap Your Boilerplate
with Class: Extensible Generic Functions. SIGPLAN Not. 40, 9 (Sept.
2005), 204–215. https://doi.org/10.1145/1090189.1086391

[6] Julia Lawall, Ben Laurie, René Rydhof Hansen, Nicolas Palix, and
Gilles Muller. 2010. Finding Error Handling Bugs in OpenSSL Using
Coccinelle. In European Dependable Computing Conference. Valencia,
Spain, 191–196. https://doi.org/10.1109/EDCC.2010.31

[7] Jonas Lundberg, Tobias Gutzmann, Marcus Edvinsson, and Welf Löwe.
2009. Fast and precise points-to analysis. Information and Software

Technology 51, 10 (2009), 1428 – 1439. https://doi.org/10.1016/j.infsof.
2009.04.012 Source Code Analysis and Manipulation, SCAM 2008.

[8] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann.
2016. On Fast Large-scale Program Analysis in Datalog. In Proceedings

of the 25th Int. Conf. on Compiler Construction (CC 2016). ACM, New
York, NY, USA, 196–206. https://doi.org/10.1145/2892208.2892226

[9] Kedar Swadi, Walid Taha, Oleg Kiselyov, and Emir Pasalic. 2006.
A Monadic Approach for Avoiding Code Duplication when Stag-
ing Memoized Functions. In Proceedings of the 2006 ACM SIGPLAN

Symposium on Partial Evaluation and Semantics-based Program Ma-

nipulation (PEPM ’06). ACM, New York, NY, USA, 160–169. https:
//doi.org/10.1145/1111542.1111570

[10] Jeffrey D. Ullman. 1989. Bottom-up beats top-down for datalog. In Proc.

of the 8th ACM SIGACT-SIGMOD-SIGART symposium on Principles of

database systems. ACM Press, New York, NY, 140–149. https://doi.
org/10.1145/73721.73736

[11] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. 2010. Soot: A Java Bytecode Optimization
Framework. In CASCON First Decade High Impact Papers (CASCON

’10). IBM Corp., Riverton, NJ, USA, 214–224. https://doi.org/10.1145/

https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1007/11785477_2
https://doi.org/10.1007/11785477_2
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.1145/1090189.1086391
https://doi.org/10.1109/EDCC.2010.31
https://doi.org/10.1016/j.infsof.2009.04.012
https://doi.org/10.1016/j.infsof.2009.04.012
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/1111542.1111570
https://doi.org/10.1145/1111542.1111570
https://doi.org/10.1145/73721.73736
https://doi.org/10.1145/73721.73736
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.1145/1925805.1925818

MetaDL: Analysing Datalog in Datalog SOAP ’19, June 22, 2019, Phoenix, AZ, USA

1925805.1925818
[12] JohnWhaley, Dzintars Avots, Michael Carbin, andMonica S. Lam. 2005.

Using Datalog and Binary Decision Diagrams for Program Analysis. In
Proc. of the 3rd Asian Symp. on Prog. Lang. and Systems (Lecture Notes

in Computer Science), Kwangkeun Yi (Ed.), Vol. 3780. Springer-Verlag.

https://doi.org/10.1145/1925805.1925818

	Abstract
	1 Introduction
	2 Background
	3 MetaDL
	3.1 Types
	3.2 Pseudopredicates
	3.3 Relational Representation of Datalog Programs
	3.4 Pattern Matching for Analysing Datalog

	4 Applications
	4.1 Checking for Cartesian Products
	4.2 Deprecation Checking
	4.3 Stratification
	4.4 Type Inference

	5 Implementation
	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

