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Abstract—Smart contracts are programs with data (mutable
state); stored on and executed by blockchain platforms. The
transactions (or function invocations) dispatched to smart con-
tracts often change their state. In the Ethereum blockchain, nodes
(aka miners/validators) can schedule a set of transactions in any
order in a block. Multiple transactions in a single block oper-
ating on a contract’s shared state may yield different outcomes
based on their execution order, thus creating a possibility for
non-determinism and races between transactions. The resulting
issue in Ethereum smart contracts is Transaction Ordering
Dependency (TOD). Detecting a TOD requires identifying valid
transactions affecting a contract’s global/state variables which
is equivalent to detecting read-after-write dependencies in race
detection, and we expect it to be similarly nontrivial for human
developers. In this paper, we identify various TODs, including a
novel type previously undocumented in the literature. To detect
these TODs, we propose an information flow analysis-based static
analyzer, TODler. Our manual evaluation of 108 Ethereum smart
contracts shows that TODler outperforms previously available
approaches in terms of both run time and precision and also
detects the novel TOD pattern identified in this paper.

Index Terms—static analysis, smart contracts, vulnerability
detection

I. INTRODUCTION

Smart contracts are computer programs stored on and
executed by a decentralized distributed network of peer-to-
peer nodes. Smart contracts allow access to their mutable
state through interfaces, which can be invoked by many users
through transactions [1]. The nodes of the blockchain network
maintain a distributed ledger of such transactions that are
packaged (in batches) into uniquely identifiable blocks linked
together to form a blockchain.
Ethereum 1 is a prominent blockchain platform that supports
the execution of smart contracts. Ethereum smart contracts
are written in high-level languages (like Solidity or Vyper)
and are compiled into low-level EVM bytecode for execution
by the Ethereum Virtual Machine (EVM). These smart con-
tracts serve as the backend logic of decentralized applications
(Dapps) supported by Ethereum.
In the Ethereum platform, the nodes that create and validate
blocks by including a set of transactions are called validators
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1The Ethereum blockchain: https://ethereum.org/en/

(or miners). All transactions dispatched to Ethereum contracts
are first placed in a buffer (transaction or memory pool)
called ‘mempool’ before a validator picks them to schedule for
execution in the next block. The order in which these trans-
actions are picked from the mempool has no guarantee [2],
[3]. Non-deterministic transaction scheduling creates issues
when multiple transactions to the same contract are batched
in a single block, and at least one transaction modifies the
contract’s state variables. Sergey and Hobor [4] describe it
as concurrent objects using shared memory. Instead of shared
memory, smart contracts have a mutable state stored on the
blockchain, accessible by multiple transactions (similar to
threads). Although these transactions execute sequentially and
atomically, their arbitrary ordering within a block can lead to
non-deterministic outcomes. For example, for two transactions,
a and b in a single block, if b accesses a contract’s storage
(global/state variables) affected by a, their execution order
can result in two different contract states. As a result, smart
contracts can become susceptible to read-write hazards, and
assumptions about the global variables of a smart contract
could be misleading due to transaction execution races [3].
This paper refers to these races as transactional data races.
Not all transactional data races are harmful to smart contracts.
For instance, it is reasonable for the first transaction to receive
the reward for submitting the correct solution. However, when
transactional data races lead to non-deterministic outcomes
that create security vulnerabilities in smart contracts, it is
referred to as Transaction Ordering Dependency (TOD), also
known as race condition/front-running. The Decentralized
Application Security Project (DASP) taxonomy 2 categorizes
TOD as one of the top 10 vulnerabilities in Ethereum smart
contracts. TOD exploitation attacks involve manipulating the
execution order of transactions, as revealed in a real-life
incident involving a high-profile Ethereum smart contract [5].
Various tools and frameworks have been created to automate
TOD detection. These tools use different analysis approaches
and include static analysis-based [6], symbolic execution-
based [2], [3], [7], formal verification-based [8], dynamic
analysis-based [1], [9], [10], and machine learning-based [11]
analyzers. As only 25% of deployed Ethereum smart contracts
have their source code available [12], analyzers that take EVM

2DASP Top 10 of 2018: https://dasp.co/#item-7



bytecode as input can analyze a broader range of contracts.
Analyzing EVM bytecode requires decompiling it into some
intermediate representation so that analysis techniques can
be applied. Gigahorse [13], [14] is a decompiler framework
and toolchain that converts Ethereum smart contracts from
low-level EVM code to a higher-level function-based three-
address representation, similar to LLVM IR or Jimple [13].
The Gigahorse toolchain is a collection of analyzers that detect
several smart contract vulnerabilities but not TOD.
In this work, we present TODler: a novel security analyzer that
takes bytecode as input and performs information flow analysis
to detect TOD in Ethereum smart contracts. TODler is built
as a client analyzer on top of Gigahorse. TODler specifically
tracks information flow to locate memory locations susceptible
to read-after-write hazards and uses this information to check
if such memory indexes are used in statements that transfer
cryptocurrencies (Ethers). The contributions of this paper are
as follows:

• We identify transactional data races in Ethereum smart
contracts and enumerate different TOD vulnerabilities
arising from them (Section II), including a novel TOD
pattern that has not been (fully) investigated in the
previous literature.

• We implement an automated analyzer, TODler, which
statically detects TOD in Ethereum smart contracts (Sec-
tion III).

• We perform an experimental evaluation of TODler on
the dataset of 108 Ethereum contracts that we manually
analyze for ground truth (Section IV). We also compare
TODler’s detection results with comparable state-of-the-
art smart contract analyzers, Oyente [2] and Securify [6].
TODler outperforms these analyzers in terms of both run
time and precision and is also able to detect a novel TOD
pattern.

II. BACKGROUND

This section presents background details on the transactional
data races and multiple forms of TOD vulnerabilities in
Ethereum smart contracts.

A. Transactional Data Races

Concurrent systems have long grappled with the problem
of data races due to transaction ordering [8]. Solidity does
not support concurrency, and transactions dispatched to smart
contracts execute sequentially and atomically. However, a node
of the blockchain platform can influence the outcome by
reordering transactions in a block [8], [15]. The nodes in the
Ethereum platform use a consensus mechanism consisting of
a complete stack of ideas, protocols, and incentives [16] to
reach a common agreement about the next (set of transactions
in the) block that will permanently change the state of the
blockchain. Ethereum has recently transitioned from a Proof-
of-Work (POW) based consensus to a Proof-of-Stake (POS)
based mechanism [16]. In a POW-based consensus [16], all
nodes (called the miners) compete by solving a difficult
math problem, and the winning node gets to create the next

block and earn a reward (for example, a certain amount of
Ethers) [17]. Alternatively, in a POS-based mechanism [16],
a random node called a validator (usually with a higher stake
in the network) is assigned to create and validate a new block
to be added to the blockchain. In the block creation process, a
validator picks a set of transactions from the transaction pool.
Ethereum charges a certain fee called “gas” to execute transac-
tions and incentivizes validators to prioritize transactions with
a higher gas price. Also, Ethereum bounds each block to utilize
a limited amount of gas, permitting only finite transactions in a
block. This means including and ordering certain transactions
in a block can maximize the profit for the validator in addition
to the standard block production reward [18]. In Ethereum,
obtaining the maximum profit out of a block is referred to as
the Maximal Extractable Value (MEV). In practice, nodes run
complex algorithms on blockchain data to detect profitable
MEV opportunities and submit those profitable transactions
to the network [18]. While it allows the validators to gain
maximum profit from each block, MEV on Ethereum can have
negative implications. For instance, if a validator observes the
upcoming transaction purchasing a large sum of tokens, they
can schedule their transaction first to buy the tokens them-
selves and increase the price for the transaction purchasing
those tokens. Also, MEV-related risks are not only related to
Ethereum’s deprecated POW consensus; Ethereum’s transition
to POS potentially introduces new MEV-related risks, such
as an increase in validator’s centralization [18]. Validators are
not the only entity responsible for prioritizing the transactions;
adversaries can also influence the gas price of transactions,
for instance, by providing more gas with their transaction
to overrun the victim contract’s transaction and thus obtain
limited control of transaction execution ordering.

B. TOD and its Forms

Transactional data races can be potentially harmful when
the state of smart contracts becomes dependent on the order
of transaction execution. This paper focuses on a specific form
of transaction ordering dependency (TOD) [2], [6], [7], [19]–
[21] which arises when multiple transactions are included
in a block, and they read from and write to global state
variables of a contract. This makes TOD a Blockchain-level
(or consensus/protocol-level) vulnerability [22] because nodes
(validators in POS and miners in POW) are responsible for
including/executing transactions in an unpredictable order. The
execution order of these transactions will result in different
contract states depending upon which transaction is executed
first. Previous literature, including the studies of Tsankov et
al. [6] and Bose et al. [7] target at most three kinds of
transaction dependencies, i.e., whether the amount to be trans-
ferred, the receiver, or the reachability of the transfer statement
(CALL instruction) as a whole are affected due to transaction
ordering [23]. The resulting TODs are TOD-Amount(TA),
TOD-Recipient (TR), and TOD-Transfer (TT), respectively. In
the present work, we specify a new type of TOD that arises
from a selfdestruct instruction in the contract becoming
affected due to transaction ordering. The selfdestruct



instruction terminates the contract and transfers the balance of
the contract (Ethers) to the recipient specified in its arguments.
The recipient’s address can be affected due to transaction de-
pendencies when it is directly taken from or is checked against
global variables susceptible to read-write hazards. Similarly,
checking such global variables in a guarding condition of a
selfdestruct instruction may also affect its execution.
We name this TOD issue TOD-Selfdestruct (TS), and it arises
when a selfdestruct instruction either transfers Ethers to
an arbitrary recipient or itself executes in-deterministically due
to transaction dependencies. TS is orthogonal to TR, and TT
explored in the previous literature [6], [7] such as TR and TT
will miss the occurrences when an explicit transfer of Ethers
is not made (for example, by using the CALL instruction), but
the contract is terminated using selfdestruct. Next, we
explain each of these vulnerabilities using abstract examples
with simplified Solidity code.
TOD-Amount: If re-ordering a pair of transactions in a block
causes a different amount to be transferred, the contract is
vulnerable to the TOD-Amount. An Ether transfer statement
may load the amount to be transferred from the contract’s
storage (global state variables). If a contract contains a public
function that allows changes to such a value, predicting the
transfer amount becomes indeterministic. Listing 1 shows
an example of the TOD-Amount in a simplified Solidity
contract.

1contract TODAmount {
2 address public owner;
3 uint public reward;
4 function setReward() public {
5 require(msg.sender == owner); //if sender is the owner

6 reward = msg.value; //change the reward

7 }
8 function claimReward(uint256 solution) public {
9 require(solution < 10); // if solution is correct

10 msg.sender.transfer(reward); //transfer reward to the

11 // transaction’s sender

12 }
13}

Listing 1. Solidity contract containing TOD-Amount

We assume a scenario: Alice creates a contract (Listing 1)
to solve a mathematical problem and sets a reward price for
anyone who solves the problem first. Alice can at any time
call setReward() function to change the reward value.
Bob solves the problem and sends the transaction expecting
the reward. Suppose Alice decides to reduce the reward and
sends the transaction to the contract, and both transactions
from Alice and Bob are included in the same block. Now the
order in which both of these transactions execute will lead to
two different outputs. If Alice sets the gas price higher, her
transaction will take precedence, and Bob will get a different
reward than expected. If Alice is also a miner/validator, she can
get information about the block’s upcoming transactions and
reduce the reward to zero with a higher gas price transaction
to get a free solution.
TOD-Recipient: TOD-Recipient is analogous to the TOD-
Amount, whereas the recipient of a transfer becomes suscep-
tible to indeterministic modifications.

1contract TODRecipient {
2 address public owner;
3 uint public reward;
4 function changeOwner(address _owner) public {
5 require(msg.sender == owner); //if sender is the owner

6 owner = _owner; //change the owner to new owner

7 }
8 function withdrawReward() public {
9 require(msg.sender == owner);

10 owner.transfer(reward); //transfer reward to owner

11 }
12}

Listing 2. Solidity contract containing TOD-Recipient

As an example of a TOD-Recipient, Listing 2 displays a
simplified Solidity contract with two public functions; one
changes the contract owner, and the other sends a reward
amount to the owner. An adversary, in this case, can generate
a composite attack by scheduling two transactions in a block
where he changes the owner (to himself or another accom-
plice) and then claims the reward. In a real-life incident of the
Parity multi-sig wallet library hack 3, a spelling mistake in the
constructor function unintendedly made it a public function
allowing changes to the owner variable.
TOD-Transfer: If re-ordering a pair of transactions in a block
makes a transfer happen in-deterministically, the contract is
vulnerable to TOD-Transfer vulnerability. It is a common prac-
tice to validate Ether transfers with conditions, for example,
to check whether the caller of the transaction is allowed to
make the transfer or if the amount of the transfer is not more
than the existing balance of the contract. If the values used in
the condition can be updated in other public functions, they
create a control dependency for the Ether transfer.

1contract TODTransfer {
2 uint public reward;
3 uint256 public secret;
4 function initSecret(address _owner) public {
5 secret = msg.value; //initialize the secret

6 }
7 function submitSolution(uint256 guess) public {
8 require(guess == secret); //if guessed the correct secret

9 msg.sender.transfer(reward); //transfer reward to the

10 // transaction’s sender

11 }
12}

Listing 3. Solidity contract containing TOD-Transfer

As an example of a TOD-Transfer, Listing 3 displays a
simplified Solidity contract with two public functions; one
changes the secret, and the other sends a reward to anyone
who guesses the secret. We assume two transactions in a block
in which Bob guesses the secret and Alice changes the secret.
Now Bob may or may not get the reward depending on the
order of execution of these transactions.
TOD-Selfdestruct: If a selfdestruct instruction either
transfers Ethers to an arbitrary recipient or executes in-
deterministically due to re-ordering a pair of transactions
in a block, the contract is vulnerable to TOD-Selfdestruct
(TS). Listing 4 displays a simplified Solidity contract that
highlights three ways a TS can arise. The first way is that

3https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/



one transaction changes the owner through changeOwner
(line 11), and another invokes either destroy1 (line 18) and
destroy2 (line 22). The second way is that one transaction
changes the bidder through changeLastBidder (line 13),
and another invokes destroy3 (line 26). Both of these
cases transfer Ethers to different recipients depending upon
which transaction gets executed. The third way is that one
transaction bids through changeLastBidder and another
invokes destroy4 (line 30), executing the selfdestruct
in-deterministically depending upon which transaction gets
executed first.

1contract TODSelfdestruct {
2 address public owner;
3 address public lastBidder;
4 uint all bids;
5 constructor(){
6 owner = msg.sender;
7 allBids = 0;
8 }
9 function changeOwner(address _owner) public {

10 require(msg.sender == owner); //if sender is the owner

11 owner = _owner; //change the owner to new owner

12 }
13 function changeLastBidder(uint bidAmnt) public {
14 require(bidAmnt >= 1);
15 allBids += bidAmnt;
16 lastBidder = msg.sender; //change the last bidder

17 }
18 function destroy1() public {
19 require(msg.sender == owner); //if the sender is owner

20 selfdestruct(payable(owner)); //destory the contract

21 //& transfer Ethers (balance) to the owner

22 }
23 function destroy2() public {
24 require(msg.sender == owner); //if the sender is owner

25 selfdestruct(payable(msg.sender)); //destory the

26 //contract & transfer Ethers (balance) to the transaction’s sender

27 }
28 function destroy3(address receiver) public {
29 require(receiver == lastBidder);
30 selfdestruct(payable(receiver)); //destory the

31 //contract & transfer Ethers (balance) to the last bidder

32 }
33 function destroy4() public {
34 require(allBids >= 10); //if the bids reach a max threshold

35 selfdestruct(payable(lastBidder)); //destory the

36 //contract & transfer Ethers (balance) to the last bidder

37 }
38}

Listing 4. Solidity contract containing TOD-Selfdestruct

III. IMPLEMENTATION

This section presents the details of the implementation of
TODler.
Analysis Pipeline: TODler is implemented in Datalog as a
client analyzer on top of the Gigahorse decompiler [13], [14].
The analysis pipeline works as follows:

• The low-level EVM bytecode of the input contract is
decompiled into a high-level representation.

• The Gigahorse decompiler constructs the data and control
flow dependencies of the EVM bytecode.

• TODler uses derived facts from the decompilation step
and formulates Datalog rules, and performs queries using
these rules.

• The analysis results are saved in relational files (.csv files)
and point out transactions susceptible to specific TODs.

Datalog: Datalog is a declarative specification language that is
based on the logic programming paradigm. A Datalog program
consists of Horn clauses like facts representing data or (true)
knowledge about the world and rules allowing the deduction
of facts from other facts [24]. A fact can be created from
multiple rules, and a rule can use previously generated facts
to infer more facts further. A Datalog rule is of the form:

header(x,y) :- fact1(x,z), fact2(y,z),

where fact1 and fact1 in the body of the rule infer an-
other fact in the header of the rule. In this example, both
(fact1)(x, z) and (fact1)(y, z) must hold for specific x, y,
and z for the rule to trigger. We express disjunction with the
syntax (fact3(x); fact4(x)): here, only one of fact3(x, y) or
fact4(x, z) needs to hold.
Decompiler: The Ethereum Virtual Machine (EVM) is a stack-
based architecture that executes smart contracts in the EVM
bytecode format [25]. Smart contracts written in high-level
languages thus need to be compiled into EVM bytecode before
they can be executed. The decompilation step reconstructs
the bytecode to a high-level representation. The Gigahorse
decompiler is based on declarative static program analysis and
is implemented using Datalog [14]. It produces functional 3-
address IR to write specialized security-related analyses on top
of it. Gigahorse offers a Datalog API for the decompilation
results and libraries of analysis functions, such as the data-
flow analysis library used in TODler [14]. A prime example
of the effectiveness of these libraries is their use in the
implementation of MadMax [26], which showcases the power
of the client analysis infrastructure of Gigahorse.
TODler Rules and Queries: TODler contains several declara-
tive rules which are used to query specific TODs. Specifically,
a predicate that we implement to be used by all the queries
is ReadAfterWriteVariables(...), which tracks the
variables that are susceptible to read-after-write operations.
Then we query if these values are used in Ether transfer (for
TA, TR, and TT) or selfdestruct instructions (for TS).
Next, we describe each TOD query in detail.
TOD-Amount: The pattern to detect TOD-Amount checks if
the transfer amount is susceptible to a read-after-write opera-
tion. The following is the simplified Datalog implementation
of TOD-Amount:
TODAMOUNT(stmt)←

READAFTERWRITEVARIABLES(v),
CALL(stmt,_,_,v,_,_,_,_). // stmt transfers amount v.

TOD-Recipient: This pattern tracks the addresses used as
recipients in the Ether transfer statement (CALL) and checks
if they are susceptible to a read-after-write operation.
TODRECIPIENT(stmt)←

READAFTERWRITEVARIABLES(v),
CALL(stmt,_,v,_,_,_,_,_). // stmt transfers to recipient v.

TOD-Transfer: This pattern checks if the values used in the
conditions guarding the Ether transfers can be updated in other
functions.



TODTRANSFER(gstmt)←
CONTROLSWITH(gstmt,blk,v),
CALL(stmt,_,_,_,_,_,_,_),
STATEMENTBLOCK(stmt,blk),
READAFTERWRITEVARIABLES(v),
STATEMENTUSES(gstm,v,_).

TOD-Selfdestruct: This pattern combines multiple predicates
representing different cases of TS. It checks whether the ad-
dress used as the recipient in the selfdestruct instruction
is susceptible to a read-after-write (cf. TS-Case1 in code
below) or is checked against a global value susceptible to a
read-after-write (cf. TS-Case2). Then it checks whether the
values used in the conditions guarding the selfdestruct
are susceptible to read-after-write operations (cf. TS-Case3).
GUARDEDSELFDESTRUCT(s,g,r)←

CONTROLSWITH(g,blk,_), // g guards a blk,
SELFDESTRUCT(s,r), // selfdestruct with recipient,
STATEMENTBLOCK(s,blk). // selfdestruct is inside the blk.

// TS-Case1: The recipient of selfdestruct is susceptible to read-after-write.
TODSELFDESTRUCTRECIPIENT(s)←

READAFTERWRITEVARIABLES(r),
SELFDESTRUCT(s,r).

// TS-Case2: The recipient of selfdestruct is checked against a value
// that is susceptible to read-after-write.

TODSELFDESTRUCTGUARDEDRECIPIENT(g)←
GUARDEDSELFDESTRUCT(_,g,r),
READAFTERWRITEVARIABLES(v),
STATEMENTUSES(g,v,_),
(v = r; DATAFLOWS(v,r)).

// TS-Case3: The selfdestruct is guarded against a value that is
// susceptible to read-after-write.

TODSELFDESTRUCTGUARDED(g)←
GUARDEDSELFDESTRUCT(_,g,_),
READAFTERWRITEVARIABLES(v),
STATEMENTUSES(g,v,_).

// TS is detected if one of the above cases is true.
TODSELFDESTRUCT(stmt)←

(TODSELFDESTRUCTRECIPIENT(stmt);
TODSELFDESTRUCTGUARDEDRECIPIENT(stmt);
TODSELFDESTRUCTGUARDED(stmt)).

IV. PRELIMINARY EVALUATION

This section presents details about the dataset used and the
results obtained from the experiment to evaluate TODler.
Dataset: The dataset contains 108 vulnerable contracts from
the public repository of Gigahorse benchmarks available on
Github 4. We chose this dataset because the source and binary
files for each contract are available and can be used to evaluate
tools that take any of these formats as input.
Experiment: We executed TODler (and other tools opted for
comparison) using an idle machine with an Intel 2.6 GHz CPU
with six cores and 16 GB of RAM. Our experiments aim to
answer one specific research question:
RQ: How effective is TODler compared to existing (compara-
ble) TOD detection tools?
To find a fitting answer to this question, first, we manually
inspected the source files from the dataset and labeled each
contract with a specific TOD form if it has a similar code
layout as presented in simplified examples in Section II-B.
Then, we analyzed these contracts by executing TODler and
comparable TOD detection tools.
Comparison against other tools: Tools that support TOD
detection include Securify [6], SAILFISH [7], Oyente [2],

4https://github.com/nevillegrech/gigahorse-benchmarks

NPChecker [3], Zeus [8], EthRacer [1], Etherolic [9], Con-
fuzzius [10], and ContractWard [11]. For the preliminary
evaluation, we intend to compare TODler with static analysis-
based tools only, excluding dynamic analysis and machine
learning-based tools (EthRacer, Etherolic, Confuzzius, and
ContractWard). Among the existing static analysis-based tools,
SAILFISH, ZEUS, and NPChecker are not publicly available.
Thusly, we executed the remaining tools, Securify and Oyente,
using SmartBug platform [27]–[29] on the source files in the
dataset and compared the results with TODler, which takes the
(runtime) bytecode of the same contracts.
Securify [6] is an abstract interpreter that encodes dependen-
cies inferred from a contract’s control flow graph as logical
facts and specifies security properties in terms of compliance
and violation patterns using these facts. Violations report all
behaviors matching the violation pattern, and warnings report
all remaining behaviors not matching the compliance pattern.
Securify has two versions, the deprecated Securify 5, and
Securify 2.0 6. We tested both versions, and this section reports
the results of Securify2.0 because the deprecated Securify
failed to report any violations or warnings against TT.
Oyente [2] is a symbolic execution-based tool for detecting
security issues in Ethereum smart contracts. The core analysis
of Oyente checks whether two distinct traces exhibit varying
Ether flows. Then it validates those traces by querying Z3
solver [30]. This validation step is reported to be incomplete
due to the execution environment of Ethereum not being fully
simulated [2]. As a result, Oyente is precise but incomplete
as it reduces false warnings but suffers from a high number
of false negatives. Oyente only detects TA and TR, and
the reported warnings do not explicitly indicate the kind of
detected TOD. Therefore, Table I combines Oyente results for
TA and TR and does not report anything on TT and TS.
Statistics: Table I shows the number of contracts identified
through manual inspection and by executing Securify, Oyente,
and TODler for each TOD kind. Based on manual inspection,
Table II presents each tool’s false positives and negatives for
each TOD kind. As, Securify generates violations (V) and
warnings (W), Table II reports false positives (FP) for vio-
lations or warnings generated by Securify that do not pertain
to any actual TOD present in the contracts. Furthermore, if
only a warning (without any violation) is generated for a
true instance of TOD, we consider it a true positive (TP).
Table II displays true positive results for Oyente if it generates
a warning for a contract, in which we manually verify the
presence of either TA or TR (at the specified code segment).
Conversely, if Oyente issues a TOD warning for a contract
in which none of its supported TOD forms exist, we classify
it as a false positive in Table II. Lastly, false negatives (FN)
are all the vulnerable TOD instances in the contracts that the
tools missed to detect. Also note that a single contract can
be susceptible to multiple TOD forms, which results in more
than 108 counts in the tables.

5Deprecated Securify: https://github.com/eth-sri/securify
6Securify v2.0: https://github.com/eth-sri/securify2



Reflecting on the Research Question: Lastly, we use the

TABLE I
ANALYSIS RESULTS WITH SECURIFY’S (V)IOLATIONS AND (W)ARNINGS.

TOD Form Manual
Inspection Securify Oyente TODler

TOD-Amount 21 32(V) + 18(W) 20 12
TOD-Recipient 24 15(V) + 14(W) 25
TOD-Transfer 47 18(V) + 22(W) - 45
TOD-Selfdestruct 5 - - 5

TABLE II
MANUAL DETERMINATION OF THE GROUND TRUTH WITH TRUE

POSITIVES(TP), FALSE POSITIVE (FP), AND FALSE NEGATIVES(FN).

TOD Form Securify Oyente TODler
TP FP FN TP FP FN TP FP FN

TOD-Amount 17 33 1 13 7 19 9 3 12
TOD-Recipient 21 8 1 19 6 5
TOD-Transfer 32 7 13 - - - 42 3 6
TOD-Selfdestruct - - - - - - 5 0 0
Total 70 48 15 13 7 19 75 12 23

above statistics to answer the research question of whether
TODler performs an effective analysis as compared to com-
parable TOD detection tools. Firstly, TODler detects a novel
TOD form, TOD-Selfdestruct, which was not previously tar-
geted in the literature (and by comparable tools, Securify,
SAILFISH, and Oyente). It also outperforms Securify and
Oyente with regard to execution time (for analyzing the
dataset), as follows:

Execution time of Securify: 3 hours 8 minutes and 11 seconds
Execution time of Oyente: 8 minutes and 20 seconds
Execution time of TODler: 5 minutes and 36 seconds

Secondly, for the TOD forms (TA, TR, and TT) detected by
Securify, Table II shows that TODler outperforms Securify by
increasing true positives for TT and decreasing false positives
for all TOD forms. Although, Securify detects more true
instances of TA and TR than TODler, but at the cost of
false violations and warnings (cf. Tables II). Through manual
inspection, we found that most of these instances use the
contract’s balance as the amount to be transferred, which the
contract did not update in any of the public functions. A con-
tract’s balance may unexpectedly change between interleaving
transactions due to asynchronous callbacks or if external
contracts are called through a delegatecall, giving them
access to the state of the caller contract [31]. Despite this,
the balance is still commonly used as a transfer amount, often
reflecting the intentional behavior of the contract. Therefore,
issuing TA warnings for using the balance (which the contract
itself does not update) as the transfer amount may cause many
false alarms. Thirdly, for Oyente’s supported TOD forms (TA
and TR), TODler comparatively achieves higher true positives
and lower false positives and negatives (Table II).

V. LIMITATIONS

In this section, we present the limitations of the current
implementation of TODler.
Front Running Attacks: In front-running attacks, a piece of
known information is utilized to gain the upper hand. In
smart contracts, an attacker can leverage public information
and schedule his transaction in a particular order to gain
illicit rewards. The implemented TOD patterns in TODler
particularly focus on Ether transfer using global variables
susceptible to read-after-write operations. The patterns do not
detect the (only) reads of global variables because not all
globally known values can be utilized to exploit TOD (for
instance, the owner is a commonly used global variable to
verify a transfer).
Non-Ether transfer TOD forms: TOD can also involve trans-
actions unrelated to asset transfers. Such instances have been
investigated as event-ordering bugs, in which changing the
order of transactions can result in an unpredictable state of
smart contracts [1]. The current implementation of TODler
does not detect such TODs.
The possibility of TOD: A possible read-after-write might not
actually happen. For example, a write operation might be
guarded through conditions, but the patterns do not check
that and currently serve as a warning. We plan to cover this
limitation in the future by covering the notion of guards, as
in the analysis implemented by Lexi et al. [31].

VI. RELATED WORK

The present work is most closely related to studies that ad-
dress concurrency aspects and non-determinism-related issues
of smart contracts [3], [4], [32], and the works proposing meth-
ods or tools for TOD detection in Ethereum smart contracts.
Studies on concurrency and non-determinism-related issues:
Shuai Wang et al. [3] enumerate various factors that could
introduce non-deterministic payment bugs (analogous to the
TOD-Amount) in Ethereum smart contracts. That study is
closely related to the present work because it addresses non-
deterministic transaction scheduling and TOD bugs. That study
also considers unpredictable execution of selfdestruct
due to data races. However, that study does not address
specific TOD forms explored in this work, such as TOD-
Transfer and specific cases of TOD-Selfdestruct. Sergey and
Hobor [4] compare smart contracts with concurrent objects
using shared memory. They use this analogy to illustrate
issues in smart contracts from the concepts of concurrency
theory and motivate using state-of-the-art verification tech-
niques for concurrent programs to smart contracts. That study
does not propose any specific approach to detect such issues.
In contrast, the present work focuses on detecting specific
issues arising from transactional data races in Ethereum smart
contracts. Meixun Qu et al. [32] use an analogy similar to
Sergey and Hobor [4] to highlight concurrency issues in smart
contracts and apply a formal verification-based technique to
detect such issues in one Ethereum smart contract. That
study addresses vulnerabilities concerning the sequence of two
transactions producing different outputs, akin to generalized



form the specific TOD cases addressed in the present work.
Studies on TOD detection tools: Many studies have proposed
tools for TOD detection in Ethereum smart contracts, as
presented in Table III. In the table, a filled circle ( ) indicates
that the tool explicitly checks a specific TOD form, and
an empty circle ( ) indicates it does not do so. A half-
filled circle with a question mark ( ) indicates that the
tool possibly detects an issue similar to the specific TOD
form but does not explicitly or fully detect it. For example,
NPChecker [3] does not handle all three cases covered by
the TS pattern. NPChecker [3] is a static analysis-based
analyzer that detects non-deterministic payment bugs arising
from unpredictable transaction scheduling and external callee
behavior. NPChecker applies information flow/taint analysis
to pinpoint global variables affected by read-write hazards and
their influence on funds transfer. NPChecker takes bytecode as
input and is the only analyzer other than TODler which takes
the execution of selfdestruct into account. However, the
payment bugs targeted by NPChecker are not identical to
TOD forms TR, TT, and TS. Securify [6] is a static analysis-
based security scanner implemented using Java and stratified
Datalog [33]. It has predefined compliance and violation
patterns that mirror the security properties’ satisfaction or
negation. Securify checks three of the four TOD issues TA,
TR, and TT detected by TODler. The original version of
Securify that takes bytecode as input is deprecated, and the
latest Securify 2.0 takes Solidity code as input. In contrast,
TODler takes (runtime) bytecode as input, allowing it to
detect a comparatively large number of deployed contracts on
the blockchain. SAILFISH [7] applies a hybrid approach of
static analysis (built on top of the Slither [34] framework)
and symbolic evaluation to detect state-inconsistency bugs
in Ethereum smart contracts. Similar to Securify, these bugs
reflect TA, TR, and TT. Oyente [2] is a symbolic execution-
based tool that detects TOD occurrences if a contract transfers
Ether differently when the order of transactions changes.
Compared with the TODler, Oyente takes the Solidity code
of Ethereum smart contracts as input and does not detect
the TT and TS issues. ZEUS [8] is an abstract interpretation
and symbolic model checking-based framework for detecting
security issues in smart contracts, including TOD. ZEUS
catches TOD by detecting writes and subsequent reads to
global variables across a pair of transactions using policy
specifications for correctness and fairness criteria. Zeus does
not directly take into account the TOD forms targeted by
TODler. Similar to the core idea behind NPChecker, Zeus
determines potential read-write hazards for global variables
that can influence Ether flows, for instance, if such variables
are used in Ether transfer statements. This excludes TR and
TT implicitly, and TS explicitly.
Apart from static detection of TOD before deployment, many
studies have proposed using dynamic analysis. Such as,
EthRacer [1] combines symbolic execution of contract events
with fuzzing of event sequences and detects TOD by checking
whether changing the ordering of function invocations results
in differing outputs. Such issues are event ordering bugs which

are a generalized form of TOD types detected by TODler.
CONFUZZIUS [10] also leverages fuzzing and constraint
solving to generate sequences of transactions causing TOD
in Ethereum contracts. CONFUZZIUS detects whether two
transaction execution traces read from and read to the same
storage variable of a contract, implying that it may detect
(some of the) specific TOD forms addressed in the present
work. Etherolic [9] performs a runtime analysis of Ethereum
contracts using concolic testing and dynamic taint tracking to
detect TOD, referred to as race conditions. The authors [9] do
not specify the kinds of TOD detected by Etherolic; therefore,
Table III highlights them as a possibility.

Lastly, machine learning algorithms have also been applied
to detect TOD in Ethereum smart contracts before deployment.
ContractWard [11] is one such tool that applies multiple
supervised classification algorithms to detect TOD. Since
ContractWard does not target specific forms of TOD, Table III
highlights a possibility against TODs addressed in this work.

VII. CONCLUSIONS

This paper investigates data races affecting smart contracts
due to the arbitrary scheduling of transactions by the nodes of
the Ethereum blockchain. When such transactional data races
cause indeterministic state outcomes in smart contracts, the
resulting class of vulnerabilities is called Transaction Ordering
Dependency (TOD). We present a static analysis-based tool,
TODler, which detects TOD in Ethereum smart contracts.
TODler applies information flow analysis to track read-after-
write possibilities to state variables used in Ether transfers and
selfdestruct instructions and conditions guarding these
statements. Our experimental evaluation reported that TODler
outperforms state-of-the-art TOD detection tools Securify and
Oyente in terms of both run time and precision and also detects
the novel TOD pattern (TS) that we specify in this paper. This
work serves as a stepping stone for our future endeavors in
detecting concurrency and non-determinism-related issues in
smart contracts.

VIII. DATA AVAILABILITY

The dataset used for evaluation contains 108 smart con-
tracts from ‘vulnerable-bytecode’ of the public repository on
GitHub 7. The tool produced in this research is also publicly
available 8.
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