
The PL-Detective Revisited

Christoph Reichenbach
Dept. of Computer Science

Lund University
Lund, Sweden

christoph.reichenbach@cs.lth.se

Abstract

The semantics of programming languages comprise many
concepts that are alternatives to each other, such as by-
reference and by-value parameter passing. To help teach
these concepts, Diwan et al. introduced the programming
language Mystery, with fixed syntax but configurable se-
mantics, and described how this language enables new ap-
proaches to teaching programming languages concepts. In
this paper, we reproduce the studies by Diwan et al. in a
Swedish setting, describe extensions to the original system,
and introduce a new technique for evaluating the utility of
student experiments. We largely confirm the earlier find-
ings and show how our evaluation technique helps us in our
understanding of student experiments.

CCS Concepts: • Applied computing→ E-learning; • So-
cial and professional topics → Computing education;
• Software and its engineering→ Language features.

Keywords: PL-Detective, Education, Programming Language
Concepts
ACM Reference Format:

Christoph Reichenbach. 2020. The PL-Detective Revisited. In Pro-
ceedings of the 2020 ACM SIGPLAN SPLASH-E Symposium (SPLASH-
E ’20), November 20, 2020, Virtual, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3426431.3428655

1 Introduction

The PL-Detective [Diwan et al. 2004] is a tool for encouraging
active experimentation when teaching classes on the Con-
cepts of Programming Languages. Instructors can integrate
it into their exercises and online exams to allow students to
discover the semantics of a programming language whose
syntax they already know.

For example, the students may have to determine whether
the language checks types statically or dynamically. In this
example, the instructor would configure the PL-Detective

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SPLASH-E ’20, November 20, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8180-2/20/11.
https://doi.org/10.1145/3426431.3428655

for either static or dynamic type checking. Then, the stu-
dents must come up with an experiment, a program that
behaves differently depending on whether types are checked
at runtime or before runtime, and encode this experiment in
the PL-Detective’s Mystery language. When the students
submit their experiment to the PL-Detective (whose configu-
ration they cannot see), they either learn that (a) the program
had an error, or (b) the program terminated, possibly with
some output. The students can run multiple experiments
to collect evidence, which they can then use to justify their
answer to the question.

In this way, the PL-Detective can facilitate an experiential
learning process [Kolb and Kolb 2006]: when the instructor
asks students to determine the semantics of Mystery, the
students must first review the concepts discussed in class
to identify how different semantics materialise in practice
(Abstract Conceptualisation), then translate these differences
into an experiment (Active Experimentation) before collect-
ing evidence (Concrete Experience). Ideally, the students will
then reflect on their insights (Reflective Observation) before
deciding on whether they have completed the task or should
continue the learning cycle to create a new experiment.
We have re-implemented, extended, and adopted the PL-

Detective in a Swedish classroom setting and here re-examine
its utility 15 years after Diwan et al.’s original study.

To understand the utility of the PL-Detective as a learning
tool, we focus on the following research questions, the first
two of which we re-use directly from Diwan et al. [2004]:

• RQ1: Did the students effectively use the PL-Detective
as an information source?

• RQ2: Did the students efficiently use the PL-Detective
as an information source?

• RQ3: Does combining multiple small exercises into
larger exercises encourage student experimentation?

• RQ4: Does the students’ ability to experiment with the
PL-Detective improve over the course of the semester?

• RQ5: Do the mistakes that the students make with the
PL-Detective evolve over the course of the semester?

• RQ6: Does success with the PL-Detective affect stu-
dent grades?

Our contributions are as follows:

• We partially reproduce the 2005 PL-Detective study
by Diwan et al. in a Swedish classroom setting.

12

https://doi.org/10.1145/3426431.3428655
https://doi.org/10.1145/3426431.3428655


SPLASH-E ’20, November 20, 2020, Virtual, USA Christoph Reichenbach

• We study a number of new exercises, including several
combinations of exercises suggested in the original
study.

• Wedescribe an extendedOpen Source re-implementation
of the PL-Detective framework.

• We introduce a new evaluation technique for PL-Detective
style experimentation, SAGE (Section 4.1).

2 Language Overview

We have re-implemented the Mystery language with mini-
mal syntactic changes. As an example, consider the following
program in our dialect, Mystery2020:
BEGIN

PRINT 1 + 2 == 2

END

Our semantics represent truth values as integers, where 1
represents “True” and 0 represents “False”. The above pro-
gram thus prints either 0 or 2, depending on whether the
language evaluates 1 + 2 or 2 == 2 first. This in turn depends
on the operator precedence that the instructor has config-
ured for the language. Depending on this configuration, the
above may also trigger an error, e.g. if both addition and
equality have the same precedence but are non-associative.
The original Mystery language provides one form of lit-

eral values (integers), three binary operators (less-than, addi-
tion, and boolean AND), statements for printing, conditional
execution and WHILE loops, as well as local and global vari-
ables together with suitable assignment statements, arrays
and associated operations, user-defined and possibly nested
procedures that can return values, and user-defined types.

The language uses up to five type constructors (depending
on its configuration): integers, subrange types (e.g., [1TO 42],
the type of all integers 𝑖 where 1 ≤ 𝑖 ≤ 42), array types,
procedure types (for variables that store closures), and user-
defined types, which may act as fresh types or type aliases.

2.1 Language Extensions

Our Mystery2020 language adds two modest extensions
to the original Mystery: a binary operator for checking
equality (==), and the option to omit type annotations.
We included the equality operator to allow us to demon-

strate different forms of equality checking for arrays. Specif-
ically, the instructor can configure the operator to perform
structural equality checking of arrays (comparing the arrays
element-wise), or by-reference equality checking (testing
whether the array variables point to the same memory).

The option to omit type annotations allows instructors to
illustrate the syntactic difference between languages with
and without explicit type information. We envision this fea-
ture for new forms of exercises that use the PL-Detective as
a gradually typed language.

3 PL-Detective Re-Implementation

We have re-implemented Diwan et al.’s PL-Detective in the
JastAdd reference attribute grammar system [Ekman and
Hedin 2007]. Unlike the original PL-Detective, our system is
an interpreter rather than a compiler. At 2970 lines of Java
code and 1291 of JastAdd code (which includes Java code),
the system has a similar size as the original PL-Detective but
allows program analysis with reference attributes. We have
found the plug-in modules for different semantic options to
be of comparable size to those of the original PL-Detective,
as reported by Diwan et al. [2004].
The PL-Detective automatically limits the number of in-

structions, the size of arrays, and the number of calls (to
prevent infinite recursion). We have made it publicly avail-
able1. We use the PL-Detective together with a web interface
that is tied to a custom course management system (Sec-
tion 3.2) that we expect to publish soon.

3.1 Configurable Syntax and Semantics

Our PL-Detective re-implementation includes four binary op-
erators (addition, equality, less-than, and boolean AND). On
the syntactic level, Instructors can freely configure the prece-
dence levels and associativities (left, right, non-associative)
of each operator. Our system reports ambiguity due to non-
associativity as an error.

The remaining semantic configuration options are:

• Parameter Evaluation Order for procedure calls,
either left-to-right or right-to-left.

• OperandEvaluationOrder for binary operators, anal-
ogously either left-to-right or right-to-left.

• ShortCircuit Evaluation for theANDoperator, which
can be enabled or disabled.

• TypeEquality forNamedTypes, which can be struc-
tural (as in C) or nominal (as in Go).

• Type Checking, which can be set to dynamic check-
ing, static checking, or disabled, which uses deferred
error reporting analogously to JavaScript.

• Default Types, used when the program omits a type
declaration. These can be disabled (meaning that type
declarations are mandatory), integer, or the specialAny
type that is the supertype of all other types.

• Array Assignment and By-Value Passing Seman-

tics, which can be set to copy arrays (as in Go) or to
share arrays by reference (as in C).

• Parameter Passing, which supports passing by Value,
Result, Value-Result, Reference, Name, and Need (as in
Haskell).

• Locals Storage Binding, which can be set to bind
local variables to either static or stack-dynamic storage.

• Scoping, which can be static or dynamic.

1https://github.com/lu-cs-sde/mystery2020

13

https://github.com/lu-cs-sde/mystery2020


The PL-Detective Revisited SPLASH-E ’20, November 20, 2020, Virtual, USA

1 Editor window
2 Button to run program
3 Keyboard bindings menu
4 Highlighted syntax error
5 Program output
6 Interface for reviewing

previous experiments

1

2 3

4

5

6

Figure 1. Annotated screenshot of the PL-Detective user in-
terface2. The program output can be a number, an empty box,
or the message Error (as in the example). The interface for
reviewing previous experiments does not track experiments
with syntax errors.

• Environment Binding for closures, allowing deep
binding (i.e., the environment of the closure is deter-
mined by the static scope as in Scala or Haskell) and
shallow binding (i.e., the environment is determined
by the call site, as in LISP 1.5).

• Array Equality, which can be structural (as in Go) or
by reference (as in Java).

• ProcedureArgument Subtyping, which determines
how the argument types of two procedure types can
vary in order for them to be considered subtypes of
each other. The possible settings are invariant, covari-
ant, contravariant (as in many object-oriented lan-
guages), and bivariant.

• Procedure Return Subtyping, which is analogous
to procedure argument subtyping but refers to the
variance of the return type.

• Literal Number Type, which allows setting the type
for integer literals; e.g., 5 can either have the type
Integer or the type [5 TO 5].

Our implementation is thus not a strict extension of the
original PL-Detective, as we omitted three configuration
options from Diwan et al. [2004] and only partially imple-
mented their Type Equality feature. In exchange, we pro-
vide eight new configuration categories (not including prece-
dence/associativity) and extend on several of the existing
configuration categories. We expect that adding the missing
features would be straightforward.

3.2 User Interface

Students interact with the PL-Detective through a web-based
user interface (Figure 1) as part of a custom course man-
agement system. This UI provides syntax highlighting and
keyboard commands in the style of of popular editors.

When students interact with the PL-Detective through
our UI, we automatically record all experiments that do not
have syntactic errors in a database. The PL-Detective reports
any output printed by the students’ programs plus at most
one error message and line number. We currently follow the
original PL-Detective setup to hide line numbers and detailed
error information and only report the message “Error” on
an error, with the exception of syntactic and lexical errors,
for which we provide students with the error line number.

When it comes to the language syntax, students thus get
a level of comfort close to that of modern IDEs, while we
avoid holding their hands for questions of semantics.

3.3 Managing PL-Detective Exercises

As in the original PL-Detective, our system tracks the number
of executed prints and the number of runs (experiments that
did not have a syntax error) per exercise. Unlike the original
system, ours can randomly select different configurations
for each student group.

4 Evaluation

We used our system for the first time as part of a new course
on programming language concepts at Lund University. We
assigned students eleven exercises with limited runs or prints
and four without such limits (Table 2).

We based our exercises and limits on the exercises fromDi-
wan et al. [2004] (reproduced in Table 1), with the following
changes:

• We conducted our study at LundUniversity, withmainly
Swedish students, and in a 7-week intensive course,
as opposed to a 13/14-week course with mainly US-
American students as at the University of Colorado at
Boulder.

• We provided an improved UI (Section 3.2).
• We cut the exercise on deep/shallow binding (sc-depth).
• Following recommendations by Diwan et al. [2004], we
combined four exercises with only two configuration
options with two new form of semantic variability (ev-
op-order, ar-eq), forming three larger exercises with
four possible configurations each.

• We added two new exercises (sy-prec and sy-assoc)
related to precedence and associativity.

• We configured our system to randomly select one pos-
sible configuration for each group, rather than hard-
wiring the same configuration for all groups.

We used our four exercises with unlimited resources partly
to familiarise the students with the syntax and UI. We do
not consider these exercises further in the following, except
where expressly mentioned.

37 two-person groups participated in our exercises in total,
submitting a total of 383 answers (each corresponding to a
unique ⟨group, exercise⟩ pair), plus 143 more answers for
2Edited for space: empty space removed.

14



SPLASH-E ’20, November 20, 2020, Virtual, USA Christoph Reichenbach

Table 1. Reproduction of the list of PL-Detective experiments as reported by Diwan et al. [2004] (Table I), with exercise Codes
added for cross-referencing with Table 2. All exercises had a limit on either the number of prints allowed or the number of
runs (column Limit), not counting experiments with syntax errors. We reproduce the table in the order in which the students
encountered them (assignment number / week in column Assignment).

Code Description Limit Assignment

sb-local What is the storage binding of local variables? 3 prints 3
ty-eq When are two types equal? 8 runs 3
ty-con Do type declarations create a new type? 2 runs 3
sc-lookup DoesMystery use static of dynamic scoping? 3 runs 4
ar-assign What are the semantics of array assignments? 6 prints 5
ev-p-order What is the evaluation order in a procedure call? 4 prints 5
ev-short DoesMystery use short-circuit evaluation? 3 prints 6
ty-p-variance When is one procedure type a subtype of another? 6 runs 6
pp-m What is the parameter passing mechanism (A)? 10 prints 7
pp-m What is the parameter passing mechanism (B)? 10 prints 7
(sc-depth) DoesMystery use deep or shallow binding? 4 prints 8

Table 2. Summary of the PL-Detective exercises in our course. Exercise codes in boldface are new exercises. Column Opt

presents the number of options that students had to distinguish between. For sy-assoc, sb-local, and pp-m, we limited the
actual number of options that students could encounter (actual number in parentheses).

Code Description Limit Assignm. Opt

WARMUP: Booleans, > and == — 1 —
sy-prec What is the relative operator precedence of >, +, ==? 5 prints 1 6
sy-assoc What is the associativity of >? 3 runs 1 3 (2)

WARMUP: Write and use a subprogram — 2 —
sb-local What is the storage binding of local variables? 3 prints 2 2 (1)
ty-eq + ty-con When are two (fresh) types equal? 4 runs 2 4
ev-short + ev-op-order How does Mystery2020’s AND evaluate its arguments? 3 prints 2 4
ev-p-order What is the evaluation order in a procedure call? 4 prints 2 2

WARMUP: Write a nested subprogram — 3 —
WARMUP: Use a closure as a value — 3 —

sc-lookup Does Mystery2020 use static of dynamic scoping? 3 runs 3 2
pp-m (a) What is the parameter passing mechanism (A)? 10 prints 3 6 (3)
pp-m (b) What is the parameter passing mechanism (B)? 10 prints 3 6 (3)
ar-assign + ar-eq What are the semantics of array assignments and equality? 8 prints 4 4
ty-p-variance When is one procedure type a subtype of another? 6 runs 4 9

exercises with unlimited resources. After manual inspection,
we excluded three of the answers to exercises with limited
resources from our study (Section 4.2.1).
All groups completed at least two exercises with lim-

ited resources, and all but four groups completed all eleven.
The groups submitted between six and 155 experiments
(mean = 40) in total across all of their answers.

4.1 Evaluation with SAGE

To evaluate student experiments, we developed a new auto-
matic technique that groups them by whether they are (a)
relevant to the given exercise and (b) expose new insights
over previous experiments in the same exercise.

Our technique re-runs each syntactically well-formed stu-
dent experiment with all possible configurations for the
given exercise and clusters the output by behaviour that
is indistinguishable to the students (i.e., produces the same
output, which may be no more than the message Error).
For example, in an exercise in which students explore

whether the == operator associates (1) to the left, (2) not at
all, or (3) to the right, the following program prints 1 for
configurations (1) and (3):

BEGIN

PRINT 1 == 1 == 1

END

15



The PL-Detective Revisited SPLASH-E ’20, November 20, 2020, Virtual, USA

while for configuration (2) it produces an error. We thus
find this program relevant: it yields evidence that can help
the students solve this particular exercise. (Note that the
programwould not be relevant e.g. to an exercise on scoping.)

If the above example printed the number 1, there are still
two configuration alternatives that the students must ex-
plore, namely (1) left-associativity and (3) right-associativity.
Submitting a further relevant program that distinguishes
between the alternatives {(1), (3)} and {(2)} would not help
the students progress (they have already eliminated (2)),
so we introduce a new category of student experiments:
insightful experiments are experiments that produce new
evidence that allows students to shrink the set of configu-
ration alternatives that explain the set of observations so
far.

In this paper, we use this classification technique to under-
stand whether student submissions are effective at grouping
and eliminating configuration alternatives. Our technique,
SAGE3, classifies each experiment as one of the following:

• insightful: discovered new, relevant evidence
• relevant: re-discovered relevant evidence that was
not insightful

• trivial: ran without error, produced no insight
• erroneous: ran with error, produced no insight
• copy: was identical (modulo whitespace changes and
variable renaming) to a previous submission

Moreover, if the set of student experiments in a homework
submission narrows down the configuration alternatives to
just one option, we consider the evidence conclusive.

Using SAGE, we found that the students submitted a total
of 1678 syntactically well-formed programs, of which 89 (5%)
were copies, 428 (26%) were erroneous, 273 (16%) were trivial,
354 (21%) were relevant and 534 (32%) insightful.
Of the 380 student answers, 275 (72%) had conclusive ev-

idence, and 254 (67%) passed the exercise, close to the 70%
reported by Diwan et al. [2005]. Figure 2 breaks down these
numbers by exercise.

4.2 Manual Investigation

We manually explored a subset of the 383 student submis-
sions to confirm that the PL-Detective was working as in-
tended and to better understand how effective SAGE was at
indicating student progress,
We focused our efforts on exercises in which (a) the stu-

dents had sufficient evidence to find the correct answer but
failed to obtain 50% or more of the grade for the question
as per the assessment of the teaching assistants (11 cases),
(b) exercises in which the students had insufficient data to
reach a conclusion but obtained 75% or more of the grade for
the question as per TA assessment (35 cases), (c) a manual
inspection of the TA’s feedback otherwise directly contra-
dicted SAGE (approximately 30 cases), and (d) all student
3Semantic Alternative Grouping and Elimination

Table 3.Obtaining complete and insightful information com-
pared against completing the exercise successfully.

Fully

correct

Not fully

correct

Conclusive 250 (65.8%) 25 (6.6%)
Insightful but inconclusive 3 (0.8%) 88 (23.2%)
No insightful experiments 1 (0.3%) 13 (3.4%)

answers in which our assessment had disagreed with TA as-
sessment more than five times (exercises sb-local, pp-m (b),
and ty-p-variance, for approximately 85 additional cases).

4.2.1 Grading with Bugs. During this process we discov-
ered and fixed several bugs in our PL-Detective implementa-
tion, including (1) a misconfiguration in our resource limiter
that allowed students to allocate arbitrarily large arrays, (2)
several bugs that produced incorrect error messages (which
sometimes led to the students getting an empty reply that
neither counted as a run nor produced information), (3) a
nondeterministic bug in precedence parsing due to concur-
rent evaluation, and three bugs in specific subsystems that
would incorrectly cause or suppress errors in corner cases.

We carefully re-examined all 39 homework submissions
in which at least one experiment behaved differently after
our fixes. Most of the impact did not affect the outcome or
was caught by the teaching assistants (when the incorrect
PL-Detective output gave rise to an alternative explanation).
However, we found three homework submissions in which
the students had not provided a satisfactory answer at least
partly due to confusion caused by one of the above bugs. We
eliminated these three cases for the rest of this study.
During this process, we re-graded each student submis-

sion that we examined as “pass” or “fail”. For the homework
submissions that we had not classified by hand (approxi-
mately 55%), the TA’s grade and feedback largely agreed
with the SAGE assessment and we treated the submission as
“pass” unless SAGE indicated otherwise or the TA’s feedback
clearly found the students’ explanation to be insufficient.

4.3 Research Questions

We now use the results from SAGE together with our parti-
tioning of student answers into “pass” or “fail” to investigate
our research questions.

4.3.1 RQ1: Did the Students Effectively use the PL-

Detective? Table 3 summarises how often students were
able to complete exercises successfully, compared to whether
they had obtained conclusive evidence or at least one piece
of insightful evidence. Among groups who obtained conclu-
sive evidence, 91% were able to translate this evidence into a
correct answer, whereas for groups that had at least some ev-
idence, the number was 69%. This number is lower than the
77% reported by Diwan et al., and the difference persists even

16



SPLASH-E ’20, November 20, 2020, Virtual, USA Christoph Reichenbach

if we split out exercises with only two options (where “some
evidence” is identical to “conclusive evidence”). One possible
explanation is the difference in maturity of the courses: we
taught our course for the first time in this setting, whereas
the earlier course was in at least its third iteration.
Figure 2 splits the four main categories (conclusive / in-

conclusive evidence vs. pass / fail) across our exercises. We
observe considerable variation: students perform best in
some of the earliest exercises and struggle most in exercise
ty-p-variance. Two exercises (sy-assoc, ev-p-order) stand out:
here, five or more groups found sufficient evidence but failed
to capitalise on it. In most of these cases, the groups found
the correct answer but did not give a sufficient explanation.

In four cases, students were able to complete the exercises
with incomplete information (according to SAGE). In all four
of those cases, the students submitted effective experiments
that triggered an unrelated error that the students interpreted
as evidence. In one of these four cases, the error was due to
a bug in our implementation, while in the other three cases
the students had included an unrelated bug in their code that
was incidental to the point of the exercise.

Figure 3 breaks down the SAGE categories by individual
experiments. For most exercises, the overwhelming major-
ity of groups were able to submit an insightful experiment
immediately as their first experiment, with the exceptions of
sb-local, ty-eq+ty-con, and ty-p-variance, three of the four
most overall failure-prone exercises (cf. Figure 2). This sug-
gests that students may not have been prepared well enough
for these exercises. In particular, we see that students sub-
mitted a large number of experiments to sb-local, which had
only two options for students to explore experimentally but
two other options that students could eliminate by reading
the information available to them.

Exercises ty-p-variance and ty-eq+ty-con saw a large num-
ber of errors initially, as students struggled with type decla-
rations in Mystery2020. Similarly, sb-local saw many type-
related errors, as students encountered variables and type
annotations for the first time. These three exercises were the
exercises most closely connected to type checking, suggest-
ing that student found types to be particularly challenging.

Perhaps surprisingly, students also started out with a high
rate of insightful experiments to pp-m (b), the exercise with
the third-lowest success rate. This effect is easier to under-
stand when comparing it to pp-m (a): both exercises asked
students to determine the correct parameter passing mode
out of six options, but pp-m (a) randomly selected among
three common options (by-value, by-reference, by-value-
result) while pp-m (b) selected among the remaining, more
challenging options. Since all but two groups started with (a)
before starting on (b) and 25 of the 35 participating groups
completed (a) before starting on (b), we expect that most
groups were able to initially capitalise on their experiences
from pp-m (a) to define an effective first set of queries.

4.3.2 RQ2: Did the Students Efficiently use the PL-

Detective? To encourage efficient experimentation, we pe-
nalised assignment task scores by up to 50% when groups
exceeded resource limits.

Figure 4 shows the number of prints or runs (depending on
the resource limit for the exercise) that the students used. For
all exercises, most students stayed within the limit, though
for ev-p-order, many used more prints than we expected.

In ty-p-variance, we see that most students came close to
exceeding the number of runs, suggesting that the number
of runs available to the students was too low.

We found three extreme outliers, each by a different very
persistent group that initially took a wrong path but ulti-
mately converged on the correct experimentation strategy.
Two of these outliers found a correct solution.

As we see in Figure 5, a substantial fraction of the suc-
cessful groups submitted additional experiments even after
they had already found conclusive evidence, especially in
exercises with a limited number of prints but unlimited runs:
even successful groups were not always effective at minimis-
ing resource usage. However, our evaluation scheme did not
penalise groups who experimented more than necessary, as
long as they remained below the resource limit.
We checked for correlation between resource usage and

group success in any given homework exercise using Spear-
man’s correlation coefficient. We found no significant cor-
relation between the fraction of prints used and whether
a group succeeded, but we did observe a significant nega-
tive correlation (𝑝 = 0.001, 𝑟 = −0.335) between the frac-
tion of submitted experiments (without syntactic errors) and
whether the group succeeded, confirming the findings by
Diwan et al. [2004]. Our hypothesis is that groups that sub-
mit fewer programs are more careful in trying to understand
previous outcomes and designing subsequent experiments.
On average, we found that students used about 75% of

the runs allocated to them, and 60% of the prints. Thus, the
students were less efficient than the students in the original
PL-Detective study (which reported the students using “a
little over 50% of the limited attempts”).

4.3.3 RQ3: DoesCombiningMultiple Small Exercises

Encourage Experimentation? Diwan et al. [2004] noted
that in their setup there were “several exercises where stu-
dents had to distinguish between only two possibilities and
thus did not engage in experimentation” and suggested adding
more possibilities e.g. by “combining two exercises with two
possibilities each into a larger exercises with more possi-
bilities.” We experimented with this idea in three exercises,
ty-eq + ty-con, ev-short + ev-op-order, and arr-assign + arr-
eq, and found these to be exercises that provoked nontrivial
amounts of experimentation, which supports Diwan et al.’s
hypothesis.

Conversely, for the three exercises in which our students
had only two options, we found that only for sc-lookup the

17



The PL-Detective Revisited SPLASH-E ’20, November 20, 2020, Virtual, USA

sy-prec
sy-assoc
sb-local

ty-eq + ty-con
ev-short + ev-op-order

ev-p-order
sc-lookup
pp-m (a)
pp-m (b)

arr-assign + arr-eq
ty-p-variance

5
1

20
14

3
2

5
9

14
5

23

1
5

2

8
1

2
3

1
2

1

3

30
30

15
15

31
24

29
24

17
29

6

Fail: insufficient experimentation Fail despite sufficient experimentation Pass despite insufficient experimentation Pass

Figure 2. Aggregate student answers by failure, success, and completeness of evidence, broken down by exercise.

students largely finished experimenting after one or two ex-
periments. For sb-local and ev-p-order, the students instead
produced many trivial or erroneous experiments. This may
be due to the latter two being limited by the number of prints,
while sc-lookup was limited by the number of runs.

4.3.4 RQ4: Do Students Improve Their Usage of the

PL-Detective? We further examined whether students’ abil-
ity to take advantage of the PL-Detective evolved over the
course of the semester but could not find any obvious pat-
terns to support this hypothesis. As Figure 3 shows, the final
exercise had the lowest fraction of initial Progress experi-
ments, while the first two exercises had among the highest.
We could not observe any significant differences even af-
ter discriminating groups based on their overall ability to
successfully complete PL Detective homework tasks.

Instead, when we checked for perfect student submissions
that only contained insightful experiments, we observed a
trend that suggested that the number of such submissions
decreased over the semester, from 15, 25, and 4 for the first
three exercises to 8, 8, and 0 for the last three exercises. This
suggests that the students’ ability to succeed in the exercises
was dominated by other factors, such as the overall difficulty
of the exercise or the students’ stress levels.

4.3.5 RQ5:Do StudentMistakeswith thePL-Detective

Evolve? Table 4 summarises the error kinds that students
encountered during experiments that were erroneous (i.e.,
triggered errors that they could not use as evidence). The
error types are largely connected to the types of exercises
that the students worked with, though we do see indica-
tions that the number of ‘Kind’ errors (in which students
declared a user-defined type and used is a variable, or vice
versa) shrunk over the course of the semester, pointing to stu-
dents learning about the shared scope between type names
and variable names. Otherwise, we see no indication that
students became more skilled at usingMystery2020, most
likely due to the substantial differences between the tasks.

Table 4. Total number of experiments per exercise (exclud-
ing experiments with syntax errors), and errors among them:
Type (Ty), Name (Nm), Name kind (K, using variable names
as type names or vice versa), Resource limit (Lt, mainly ar-
ray size limits), and Other, which includes out of bounds
accesses (33), numeric literals too large for 32 bit numbers
(17), and assignments to out-mode variables (7, all pp-m (b)).

Exercise Total Ty Nm K Lt Other

sy-prec 119 0 0 0 0 0
sy-assoc 50 0 0 0 0 0
sb-local 150 23 22 9 2 0
ty-eq+ty-con 115 12 12 8 0 1
ev-short +
ev-op-order

126 5 8 0 4 4

ev-p-order 72 4 3 0 0 0
sc-lookup 55 1 1 0 0 0
pp-m (a) 251 7 37 4 2 25
pp-m (b) 306 9 17 1 0 7
arr-assign +
arr-eq

173 9 18 0 8 24

ty-p-variance 261 115 20 0 5 1

4.3.6 RQ6: Do PL-Detective Exercises Affect Grades?

After the final exam for the course, we examined whether
group performance in the homework exercises was corre-
lated with group member performance in the exam. Fol-
lowing Wolfe [1990], we tried to avoid evaluating learning
success by summary grades and instead directly examined
seven exam questions that were closely connected to home-
work assignments, though we had to eliminate one from this
consideration because all students were able to give a fully
satisfactory answer to it in the exam.
When comparing across all students, we found no sig-

nificant correlation. We then explored the hypothesis that
one student in each group might have benefit more than
the other. We separated groups into the ‘weaker’ and the

18



SPLASH-E ’20, November 20, 2020, Virtual, USA Christoph Reichenbach

1 2 3 4 5 6 7 8 9
submission order

0

10

20

30

nu
m

be
r o

f s
ub

m
iss

io
ns

sy-prec

Copy
Error
Trivial
Relevant
Insightful

1 2
submission order

0

10

20

30

nu
m

be
r o

f s
ub

m
iss

io
ns

sy-assoc

Copy
Error
Trivial
Relevant
Insightful

0 1 2 3 4 5 6 7 8 9 10111213141516
submission order

0

5

10

15

20

25

30

nu
m

be
r o

f s
ub

m
iss

io
ns

sb-local

Copy
Error
Trivial
Relevant
Insightful

0 1 2 3 4 5 6 7 8 9 10 11 12
submission order

0

5

10

15

20

25

30

nu
m

be
r o

f s
ub

m
iss

io
ns

ty-eq + ty-con

Copy
Error
Trivial
Relevant
Insightful

0 2 4 6 8 10 12 14 16 18 20
submission order

0

5

10

15

20

25

30
nu

m
be

r o
f s

ub
m

iss
io

ns

ev-short + ev-op-order

Copy
Error
Trivial
Relevant
Insightful

1 2 3 4 5
submission order

0

5

10

15

20

25

30

nu
m

be
r o

f s
ub

m
iss

io
ns

ev-p-order

Copy
Error
Trivial
Relevant
Insightful

1 2
submission order

0

5

10

15

20

25

30

35

nu
m

be
r o

f s
ub

m
iss

io
ns

sc-lookup

Copy
Error
Trivial
Relevant
Insightful

0 2 4 6 8 10 12 14 16 18 20 22
submission order

0

5

10

15

20

25

30

nu
m

be
r o

f s
ub

m
iss

io
ns

pp-m (a)

Copy
Error
Trivial
Relevant
Insightful

0 2 4 6 8 10 12 14 16 18 20 22
submission order

0

5

10

15

20

25

30

nu
m

be
r o

f s
ub

m
iss

io
ns

pp-m (b)

Copy
Error
Trivial
Relevant
Insightful

0 2 4 6 8 10 12 14 16 18 20 22
submission order

0

5

10

15

20

25

30

nu
m

be
r o

f s
ub

m
iss

io
ns

arr-assign + arr-eq

Copy
Error
Trivial
Relevant
Insightful

0 2 4 6 8 10 12 14 16 18 20 22
submission order

0

5

10

15

20

25

30

nu
m

be
r o

f s
ub

m
iss

io
ns

ty-p-variance

Copy
Error
Trivial
Relevant
Insightful

Figure 3. Effectiveness of student experiments in gaining insight in an exercise. The x axes represents the number of
experiments, the y axes represents the number of experiments in the five SAGE categories. Despite several instance of Copy
we observed no instances of the students resubmitting the exact preceding program with no changes. All tables are clipped at
24 experiments, though we saw one outlier each in pp-m (a) (83 experiments), pp-m (b) (116 experiments), and pp-m (b) (77
experiments), by three different groups. The first two of these outliers were successful in identifying the correct configuration,
but had already obtained conclusive evidence after their first experiment.

19



The PL-Detective Revisited SPLASH-E ’20, November 20, 2020, Virtual, USA

0 1 2 3 4 5 6 7 8 9 10
number of prints

02
46
8101214

nu
m

be
r o

f g
ro

up
s sy-prec

0 1 2 3
number of runs

0
5

10
15
20

nu
m

be
r o

f g
ro

up
s sy-assoc

0 1 2 3 4 5
number of prints

0
2
4
6
8

10

nu
m

be
r o

f g
ro

up
s sb-local

0 1 2 3 4 5 6
number of runs

0
2
4
6
8

10

nu
m

be
r o

f g
ro

up
s ty-eq + ty-con

Outliers:
  at 13

0 1 2 3 4 5 6 7 8 9 10 11 12
number of prints

0
1
2
3
4
5
6

nu
m

be
r o

f g
ro

up
s ev-short + ev-op-order

0 1 2 3 4 5 6 7 8 9 10 11
number of prints

0
2
4
6
8

10

nu
m

be
r o

f g
ro

up
s ev-p-order

0 1 2 3
number of runs

0
5

10
15
20

nu
m

be
r o

f g
ro

up
s sc-lookup

0 1 2 3 4 5 6 7 8 9 10111213
number of prints

0
1
2
3
4
5
6
7

nu
m

be
r o

f g
ro

up
s pp-m (a)

Outliers:
  at 69

0 1 2 3 4 5 6 7 8 9
number of prints

0
1
2
3
4
5
6

nu
m

be
r o

f g
ro

up
s pp-m (b)

Outliers:
  at 37

0 1 2 3 4 5 6 7 8
number of prints

0
2
4
6
8

10
12

nu
m

be
r o

f g
ro

up
s arr-assign + arr-eq

0 1 2 3 4 5 6 7 8 9 10 11
number of runs

0
2
4
6
8

10

nu
m

be
r o

f g
ro

up
s ty-p-variance

Outliers:
  at 77

Figure 4. Resource usage by exercise (for prints or runs, depending on the exercise). The x axis represents the number of runs
or prints used, the y axis the number of groups in that category. The dashed line is the soft resource limit for the exercise.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
unnecessary additional experiments

sy-prec

sy-assoc

sb-local

ty-eq + ty-con

ev-short + ev-op-order

ev-p-order

sc-lookup

pp-m (a)

pp-m (b)

arr-assign + arr-eq

ty-p-variance

12 of 31

11 of 35

10 of 15

6 of 17

13 of 30

12 of 32

6 of 30

16 of 25

14 of 20

20 of 29

3 of 8

Figure 5. Number of experiments that the students ran after they had already gathered conclusive evidence.

‘stronger’ student, based on their exam grades. We found
no evidence that the weaker students’ performance was cor-
related to their group’s performance in related homework
questions but we did find evidence that the stronger students’
performance in relevant exam questions was correlated to
group performance in two of the six cases: for pp-a (𝑝 = 0.02
and 𝑟 = 0.42) and for sb-local (𝑝 = 0.02 and 𝑟 = 0.45).
One possible explanation for these correlations could be

that in many groups, only one student contributed to these

homework questions. Leonardi et al. [2009] notes that engi-
neering students often prefer to work alone, meaning that
the students may have split up the work instead of collaborat-
ing. However, we find the evidence for this case to be weak:
the exam included three exam questions on different param-
eter passing modes (pp-a), while we only saw a significant
correlation for one of them.

20



SPLASH-E ’20, November 20, 2020, Virtual, USA Christoph Reichenbach

5 Discussion

While our results largely confirm the main findings of the
original 2004 study as well as the merit of same study’s
proposal for merging (or expanding on) smaller exercises,
we also observe room for further improvement.

Improvements to theApproach. On average, each group
failed on one third of the PL-Detective exercises. Consider-
ing that our SAGE technique allows us to partly automate
the grading of the students’ submissions (at the cost of skip-
ping the stage in which they explain their reasoning), we
could allow students to re-do these exercises, in the style of
Mastery Learning [Bloom 1968]. We could further automate
the judgement of student reasoning by asking students to
write down what behaviour they expect for the alternative
configurations, which is trivial to machine-check.

Another concern that we observed is that 45% of the time
when groups had gathered conclusive evidence, they sub-
mit further experiments (Figure 5). This may indicate that
the groups are not applying (or deferring) reflective observa-
tion [Kolb and Kolb 2006]. One option to encourage reflection
is to ask students to explain what they learned from each
individual experiment.

Alternatively, we could use SAGE to give direct feedback
on whether the students are “on the right track” [Feldman
et al. 2019]. To avoid over-reliance on SAGE, we could delay
SAGE feedback, which could also encourage students to start
their homework early [Leonardi et al. 2009].

Threats to Validity. Our study is subject to a number of
threats to internal validity, and we have listed the threats
that we are aware of as part of the preceding evaluation.
One goal of our study was to address threats to external

validity in the original PL-Detective study. Our study differs
by us using a new (though largely equivalent) implementa-
tion and interface, and integrating with a different course
structure at a different level of maturity. Moreover, both the
experimenter and the study subjects were different, with the
latter having a substantially different educational and gener-
ational background. The differences to the original study that
we observed in Sections 4.3.1 and 4.3.2 suggest that further
studies may be necessary to better understand their causes.

6 Related Work

There is now a variety of techniques to support online stu-
dent learning [Diwan et al. 2005; Feldman et al. 2019;Wrigstad
andCastegren 2017] in the form of “blended learning” [Stacey
and Gerbic 2008] that combines online activities with in-
person meetings. Our work re-validates one of these tech-
niques and sheds more light on the approach’s strengths and
weaknesses. Moreover, it is to the best of our knowledge the
first reproduction of an evaluation for such a teaching tool.

The above-mentioned techniques provide instructors with
new abilities, such as automatic (varied) repetition to sup-
port mastery learning [Bloom 1968; Wrigstad and Castegren
2017], exercise synthesis [Radošević et al. 2010] and MOOC
support. Not all of these are immediately applicable to the
PL-Detective, though we sketch some ideas in Section 5 for
some future extensions to the PL-Detective approach.

7 Conclusions

We have reproduced Diwan et al.’s 2004 PL-Detective study
with a re-implementation of the PL-Detective system. We
added an improved user interface and several extensions,
evolved the original exercises as recommended by the orig-
inal authors, and used a novel technique to evaluate the
student submissions in greater detail. Our analysis shows
that students in our setting were somewhat less effective
(69% vs 77%) and efficient (75%/60% vs. 50% of the available
resources) at using PL-Detective than the students in the
earlier study. At the same time, we confirmed a correlation
reported in the earlier study that shows that student groups
with fewer experiments tend to be more successful. Finally,
we identified a more detailed analysis technique that sheds
additional insight into how students use the PL-Detective.

Acknowledgments

This work was partially supported by Wallenberg Artificial
Intelligence, Autonomous Systems and Software Program
(WASP) funded by Knut and Alice Wallenberg Foundation.
The author is grateful to Görel Hedin and the anonymous
SPLASH-E reviewers for valuable feedback.

References

Benjamin S Bloom. 1968. Learning for Mastery. Instruction and Curriculum.
Regional Education Laboratory for the Carolinas and Virginia, Topical
Papers and Reprints, Number 1. Evaluation comment 1, 2 (1968), n2.

Amer Diwan, Michele H. Jackson, William M. Waite, and Jacob Dickerson.
2005. PL-Detective: Experiences and Results. SIGCSE Bull. 37, 1 (Feb.
2005), 221–225. https://doi.org/10.1145/1047124.1047423

Amer Diwan, William M. Waite, Michele H. Jackson, and Jacob Dickerson.
2004. PL-Detective: A System for Teaching Programming Language
Concepts. J. Educ. Resour. Comput. 4, 4 (Dec. 2004), 1–es. https://doi.
org/10.1145/1086339.1086340

Torbjörn Ekman and Görel Hedin. 2007. The JastAdd system—modular
extensible compiler construction. Science of Computer Programming 69,
1-3 (2007), 14–26.

Molly Q Feldman, Yiting Wang, William E Byrd, François Guimbretière,
and Erik Andersen. 2019. Towards answering “Am I on the right track?”
automatically using program synthesis. In Proceedings of the 2019 ACM
SIGPLAN Symposium on SPLASH-E. 13–24.

Alice Y Kolb and David A Kolb. 2006. Learning styles and learning spaces:
A review of the multidisciplinary application of experiential learning
theory in higher education. In Learning styles and learning: A key to
meeting the accountability demands in education. Nova Science Publishers
New York, 45–91.

21

https://doi.org/10.1145/1047124.1047423
https://doi.org/10.1145/1086339.1086340
https://doi.org/10.1145/1086339.1086340


The PL-Detective Revisited SPLASH-E ’20, November 20, 2020, Virtual, USA

PaulM Leonardi, Michele H Jackson, andAmerDiwan. 2009. The Enactment-
Externalization Dialectic: Rationalization and the Persistence of Counter-
productive Technology Design Practices in Student Engineering. Acad-
emy of Management Journal 52, 2 (2009), 400–420.

Danijel Radošević, Tihomir Orehovački, and Zlatko Stapić. 2010. Automatic
on-line generation of student’s exercises in teaching programming. In
Radošević, D., Orehovački, T., Stapić, Z:" Automatic On-line Generation of
Students Exercises in Teaching Programming", Central European Conference
on Information and Intelligent Systems, CECIIS.

Elizabeth Stacey and Philippa Gerbic. 2008. Success factors for blended
learning. In Proceedings of the 25th ASCILITE Conference (Melbourne,
Australia). 964–968.

Joseph Wolfe. 1990. The evaluation of computer-based business games:
Methodology, findings, and future needs. Guide to business gaming and
experiential learning (1990), 279–300.

TobiasWrigstad and Elias Castegren. 2017. Mastery Learning-Like Teaching
with Achievements. In SPLASH-E.

22


	Abstract
	1 Introduction
	2 Language Overview
	2.1 Language Extensions

	3 PL-Detective Re-Implementation
	3.1 Configurable Syntax and Semantics
	3.2 User Interface
	3.3 Managing PL-Detective Exercises

	4 Evaluation
	4.1 Evaluation with SAGE
	4.2 Manual Investigation
	4.3 Research Questions

	5 Discussion
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

