
A New Java Runtime for a Parallel World

Christoph Reichenbach
University of Massachusetts
creichen@cs.umass.edu

Yannis Smaragdakis
University of Massachusetts

yannis@cs.umass.edu

Abstract
Parallelism is here to stay. Unfortunately, today’s mainstream pro-
gramming languages (such as Java) are not designed for easy par-
allelisation. We thus propose to extend Java with primitives for par-
allel queries, using a radically redesigned Java runtime system.

1. The challenge
Single CPUs with more than 50 cores are available today; at the
current rate of growth, we can expect single applications to have
access to thousands of cores within ten years. Exploiting such mas-
sive parallelism is challenging with today’s mainstream languages
(such as Java), since their imperative design and dynamic features
make it hard to parallelise automatically. At the same time, manual
parallelisation e.g. through fork/join or generic multithreading li-
braries require careful program design. We thus propose to extend
Java with language features that are (a) easy to parallelise, (b) pow-
erful, and (c) easy to use. We argue that meeting these challenges
will require substantial changes to the Java runtime model.

First, consider some computations that are easy to parallelise
and that any such language extensions should therefore support.
The most promising candidates are computations that are ‘embar-
rassingly parallel’ in the sense of parallel computation. For these
problems, increasing the number of CPUs by a factor of k will
asymptotically speed up execution by that same factor k:

• Combinatorial experiments, wherein we try all options
• SQL-like queries, selection and filtering
• Term substitution of free variables in algebraic terms
• Searching in an unsorted array

These computations will likely only make up part of any interesting
program, but we can speed them up arbitrarily (for a suitably large
input size): whenever we double the number of cores in our system,
we halve the time needed for these queries — as long as our
language and runtime provide support for them.

All of the above computations, including SQL selections with
filters and joins, fit into the model of first-order queries. Such
queries have the form ‘give me all 〈x1, . . . xn〉 that make property
p(x1, . . . , xn) hold,’ where p is a first-order logical formula. Thus,
these queries would be a good first approximation for the language
features we are looking for; in fact, Microsoft’s commercial PLinq
system provides a very similar mechanism. However, the real chal-
lenge lies in providing runtime support for such queries.

2. Overview
Parallelising queries such as the above is impractical with the
standard Java heap model. To see this, let us try to implement a fast
parallel implementation of the ‘contains’ check for Java containers,
as in Figure 1.

If datalist is an ArrayList, it is easy to see how we can parallelise
this task:

class Data { int value; String name; ... }
Data key = new Data(...);

List<Data> datalist = ...;
return data.contains(key);

Figure 1. Parallelisable example program

• Fan out: We assign each core a portion of the array that is
roughly the same in size for all cores, avoiding overlap.
• Execute: Our cores now compute local results, which may be

true or false.
• Fan in: Finally, the cores write back their result. In our case, the

result is a boolean flag, so each core would only write true if it
had found the result and otherwise leave the result untouched
(defaulting to false).

However, this parallelisation is critically dependent on the struc-
ture of our list. If datalist is not an ArrayList but a LinkedList, it fails:
in a linked list we only see the first (and perhaps the last) element;
to find intermediate elements to fan out on, we have to chase point-
ers across the heap. This problem generalises to other queries we
might be interested in, such as our term substitution example: if
we start with a root term object, we must again chase pointers to
find all nodes that make up the term. This is something we cannot
parallelise — unless we change the Java heap model.

3. Heap design for quick fan-out
What if we represent objects not as memory blocks with pointers,
but instead as records in relational tables, indexed by unique keys?

In that case, we can fan out on our list (or on any other data
structure) easily, as long as all the list nodes are stored in the same
table. We can then exploit the straightforward table layout exactly
as we did for the parallel ArrayList .contains check.

For representing LinkedLists, the array would be an array of
LinkedList.Entry, where LinkedList.Entry is the inner class that rep-
resents list nodes (i.e., each LinkedList.Entry contains a value, a pre-
decessor reference, and a successor reference.) As a first approxi-
mation, this array of LinkedList.Entry objects might contain all in-
stances of LinkedList.Entry on the heap.

This idea gives us a notion of ‘classes-as-tables’, and it works
well if we want to query all instances of LinkedList.Entry. However,
if we have fewer cores than list nodes, processing all conceivable
nodes becomes wasteful; furthermore, we cannot easily merge the
tables for list nodes of lists containing elements of different types
(such as Integer and String.)

There are several possible approaches to addressing this con-
cern. First, we can separate node sets by type. Second, we can
separate node sets by owner. Note that the existing design of
the Java language and libraries offers a convenient heuristic:

in existing implementations (such as the GNU Classpath im-
plementation of java. util .LinkedList), inner helper nodes such as
LinkedList.Entry<Integer> are typically inner classes of limited vis-
ibility (private, in the case of Classpath). This means that such
helper nodes are only ever instantiated within their surrounding
class, either statically or in the presence of an ‘owning’ object.
This gives us an ownership heuristic and allows us to construct
class-local tables. Third, for frequent queries we may be able to
dynamically predict the relevant tables and extract them suitably.

3.1 Accommodating sequential code
The price we pay for translating all objects into rows in a rela-
tional table representation is that field lookup is no longer straight-
forward. In the standard Java heap model, we look up a field by
interpreting an object reference obj as a pointer p, a field f as a con-
stant offset δ to that pointer, and a field reference obj. f to a read
from (or write to) memory address p + δ. In a relational representa-
tion, accessing a field requires an extra indirection. Consider class
Data from Figure 1, with fields int value and String name. We might
represent elements of this class in a table, e.g. a B-tree containing

ID (key) value name
0x1fba 0 "foo"

0x0052 23 "bar"

0x0e08 17 "quux"

.

If we now want to look up a field from this table, e.g. key.name,
we have to look up the object ID (such as 0x0052) in this table
before we can access the correct field. We can speed up the lookup
by keeping the table sorted, but that comes at extra cost when
creating new entries; we can speed up the search by allocating extra
cores for table lookup, but this speedup is bounded by the number
of CPUs and thread execution overhead.

We thus propose two additional strategies for combatting the
overhead of this representation:

• On-demand representation translation, wherein we initially
represent objects with the default Java representation (as much
as possible) and only translate them the first time we need them
for a query, and
• Field caches, which remember ‘popular’ fields (by a suitable

heuristic) in a form that is easier to access.

With field caches, we represent each Java object as a pointer
to a record, which in turn contains the usual Java object header
(virtual function tables etc.) together with a fixed-size field cache
array. This array stores recently modified fields and any informa-
tion needed by the access heuristic. Meanwhile, the object pointer
simultaneously serves as the ID (or primary key) to the object table.

To gauge the overhead of this strategy for strictly sequential
code, we implemented a small number of C micro-benchmarks
and ran them with two memory models. The first memory model,
simple, represents each object as an array and accesses fields with
fixed offset into that array. We expect this memory model to behave
equivalently to record field access. The second model, cached,
represents each object in two ways: first in a hash table laid out
similarly to our Data table above, and secondly in a field cache for
up to three fields. Each field cache read hashes the field offset to a
cache location, checks whether the field is currently in the cache,
and falls back to the hash table (updating the field cache) as needed.
For updating fields, we use a write-through strategy.

We applied both memory models to four problems: qsort
(quicksort), 1d-puzzle (solving a one-dimensional puzzle by brute
force), 2d-puzzle (as 1d-puzzle but in two dimensions), and read,
which allocates a large number of objects (using more than two

orders of magnitude more memory than offered by the L1 cache)
and measured read performance. Of our benchmarks, quicksort and
1d-puzzle used two fields (causing no field cache conflicts), while
2d-puzzle used four fields and read used 20 fields, causing frequent
field cache conflicts.

We compiled these programs with gcc 4.4 and ran them on an
Intel Core 2 6600 clocked at 2.40GHz. None of our benchmarks
used any form of parallelism. The table below summarises the end-
to-end run-time of 100 runs of each benchmark:

setup qsort 1d-puzzle 2d-puzzle read
simple 8.547s 94.664s 14.074s 2.959s
cached 15.595s 107.559s 15.416s 4.489s
slowdown 1.83 1.14 1.10 1.52

The slowdown we measured was thus between 10% and 83%.
Note that both of the puzzles (in either heap model) fit comfortably
into the L1 cache for both representations, despite field cache
conflicts. quicksort and read did not, which may explain their less
satisfying performance.

Note that this experiment did not take advantage of any parallel
optimisations, such as field prefetching, and deliberately assumed
that we were representing the entire heap in relational form. Thus,
there may still be considerable room for improvement left in the
sequential case. Of course, in practice a slowdown of 83% of half
of a program may still be acceptable if, in return, we speed up the
other half by a factor that is only bounded by the number of cores
we can fit into our system.

3.2 Other challenges
Supporting our heap design requires further design considerations,
some of which we list below.

Memory management. Once we complete a parallel computa-
tion, we have to ‘fan in’ the results. Boolean result are straightfor-
ward, as we showed. However, when we fan in structured results
— such as a term after variable substitution — we need to make
sure that we represent result in the same way that we represent
other heap objects. This is nontrivial, as all cores may be allocating
objects in parallel, especially since object allocation in our model
this means allocating both table rows and field caches for each ob-
ject. Clearly, we must avoid any form of locking. To facilitate such
parallel allocation, we therefore suggest the use of core-local field
cache object allocators together with partitioned hash tables, where
each core is assigned a partition in the result table such that the
core-local field cache object allocator only generates objects at ad-
dresses that map into the core’s partition: this ensures that there will
be no overlap on tables or on the ‘regular’ heap.

Subclasses. We can implement subclasses by sharing common
fields in the superclass table and storing only ‘new’ fields in sub-
class tables. However, this may yield less than perfect locality. An
alternative design would be to heuristically pad each table row in
the superclass table, and use this padding to store the fields of any
subclasses (whenever possible).

4. Conclusion
To provide facilities for fast, expressive, and parallelisable queries
in Java, we propose a redesigned Java run-time system, built ex-
pressly for the needs of parallelisation. While such a transition
comes at a cost to sequential code, we argue that this cost can be off-
set by a number of techniques, such as field caches and on-demand
representation translation. We expect that we can thus, at a small
runtime cost, provide both significant increases in expressive power
and scalable parallelisation to Java programmers.

	The challenge
	Overview
	Heap design for quick fan-out
	Accommodating sequential code
	Other challenges

	Conclusion

