
CSCI 3155: Recitation # 7

Set Theory for Understanding Programming

Languages

Christoph Reichenbach <reichenb@colorado.edu>

October 16, 2003

1 Basic Concepts

As noted in the previous worksheet, Set Theory is a fundamental part of modern
mathematics; it also is one of the most frequently used mathematical theories in
Computer Science. To a limited extent, we’ve already observed its usefulness in
our discussions on grammars and the languages they generate; another example
where they are useful is in modelling data types.

There are many ways to explain set theory; in here, we choose the approach
of defining it (informally) through binary relations.

1.1 Relations

A binary relation between two mathematical objects is usually written as an
infix symbol, such as (<). For example, for the mathematical objects 1 and 2,
we can validly state 1 < 2; however, the claim 2 < 1 would be false. We call
such a relation “binary” because it is between precisely two objects; while it is
easily possible to define relations of arbitrary arity (meaning that they relate
arbitrarily many mathematical objects to each other), we will stick to binary
ones here.

Set Theory provides one fundamental binary relation it is centered on: The
“is-element-of” relation, usually written (∈). For example, if N is the set of
natural numbers, we can validly claim 1 ∈ N, whereas apple ∈ N would not be
true.

Another example would be a set T with the following defining property:

x ∈ T if and only if x ∈ N and 0 ≤ x ≤ 9

and now discuss whether elements are contained in it, e.g. whether 7 ∈ T (def-
initely true) or 11 ∈ T (definitely not true). In some sets, such as the set P
of all prime numbers in existance (an infinite set), actually checking whether
this is true is very hard computationally; we know that 5 ∈ P, but what about

1

147710487433? Worse, there are some infinite sets for which checking member-
ship is impossible in the general case.

Set theory also makes use of another binary relation, the “is-subset-of” re-
lation1, written (⊆). We can define this as follows2:

S ⊆ T if and only if, for any x ∈ S, x ∈ T holds.

So, considering our earlier examples, we can now state the following:

• P ⊆ N

• T ⊆ N

• N ⊆ N

• T * P

We usually strike through relations to explain that they do not hold, e.g. 4 /∈ P.
In some cases, it may be useful to talk about the equality of two sets S and

T . The definition for set equality is as follows:

S = T ⇐⇒ (S ⊆ T) and (T ⊆ S)

(where A ⇐⇒ B means that A is true if and only if B is true, in turn meaning
that it also is false if and only if B is false.)

1.1.1 Summary

We have introduced the binary relations (∈) and (⊆), and their inverted counter-
parts, (/∈) and (*). From their definition, we see that, for any two mathematical
objects A and B, we always have exactly one of A ∈ B or A /∈ B, but not both
at the same time. The same holds for A ⊆ B and A * B. Furthermore, we
have defined set equality (=) as mutual set inclusion.

1.1.2 Relations to data types

We can think of certain sets as being mathematical models for data types. For
example, some languages, such as Haskell, allow integral numbers of arbitrary
size to be represented; for these, we can think of Z, the set of all integral numbers
(including the non-negative ones), as being a good model. The general approach
for a given type is to determine the set of all values a variable of that type can
take, and use this as the type’s mathematical model.

As an example, the subrange type C3 = [0 TO 3] can be modelled by a
set C3 = {0, 1, 2, 3}; the subrange type C1 = [0 TO 1] by the set C1 = {0, 1}

1A more precise name would be “is-subset-of-or-equal-to”. There also is a relation for strict
or true subsets which excludes the set itself, but we do not consider this here.

2While there are compact mathematical languages to express statemtents like the one here,
it turns out that almost anything we can unambiguously write in English can be translated
into the more popular of these.

2

(subsection 1.2.1 explains this notation for those who are unfamiliar with curly
braces).

As we can see, C1 ⊆ C3– translated back into programming languages, this
means that any value of type C1 is also a value of type C3. As it turns out, this
works in a much more general way, so that A ⊆ B for any A and B means that
the types they model are in a subtype relationship (please refer to the handout
on subtyping for details).

1.2 Set Construction

We have discussed three ways to talk about sets, but one important thing is
missing: We have not discussed how sets can actually be constructed. Set
Theory defines a number of ways in which this can be done, but its axioms only
give us one pre-existing set:

∅ = {}

The empty set can be written in two ways; its defining properties are that, for
whichever X we pick out of the universe of mathematical objects, the following
properties hold:

• X /∈ ∅

• X ⊆ ∅ in precisely one case, namely if X = ∅.

Beyond that, there are a number of acceptable methods to construct sets, which
can be given arbitrary names (much as a record type be introduced in a pro-
gramming language as soon as the need for it arises).

1.2.1 Writing down all elements

The easiest way to write down sets is to list all of their elements explicitly:

lunch := {steak, potatoes, vegetables}

Note that we use “:=”, not “=”, to define this set. “=” is also used for this
purpose on occasion, but writing “A := B” is generally considered to be the
“more correct” way to define A in terms of B.

In the above definition, the set lunch has three elements, listed explicitly.
But this does not indicate any special order about these elements– sets are
completely unordered, meaning that, with

lunch′ := {vegetables, steak, potatoes}

lunch′′ := {potatoes, steak, vegetables}

it is true that lunch′ = lunch, and also that lunch′′ = lunch, and thus lunch′ =
lunch′′.

Writing down all set elements has one notational disadvantage, though: It
seems as if we could include an element in a set more than once, i.e. S =

3

{1, 1, 1} or similar. This does not make mathematical sense– the only thing we
know about this set is that 1 ∈ S (and that nothing else is in there); the “is-
element-of” relation does not yield any mechanism for describing “numbers of
occurences”3. As such, there is no such thing as a list that contains an element
“more than once”; either the element is contained, or it is not.

Note the strong correspondence to enumeration types here– for any enumer-
ation type, we also write down explicitly all the values we want variables of that
type to be able to assume as well, e.g. we could define

TYPE lunch type = {vegetables, steak, potatoes};

in Modula-3, and use one of the sets above as a model for lunch type.

1.2.2 Comprehending sets

One very powerful way for set construction is by restriction of existing sets4.
An example of this is the following:

T := {x|x ∈ N, x < 10}

which gives us another way to define the set containing the ten smallest
natural numbers. This approach is also called set comprehension; it works as
follows:

For {X|c1, . . . cn}, the set it describes are all X for which all of the conditions
c1, . . . cn are true. In our example above, X is just the variable x. If we did not
have any conditions, x could be any mathematical object; however, we restrict
it in two ways (note that order does not matter for conditions, either):

• x ∈ N: x can only be one of the elements of N, i.e. the relation x ∈ N
must hold.

• x < 10: x must be less than ten, i.e. the relation x < 10 must hold.

The second restriction is an example of using relations we know from outside of
set theory (arithmetics, in this case); in general, we can pick any condition on
x that can be defined concisely.

Note that this gives us a great model for the type [0 TO 9]; more generally,
we see that, for a subrange type T = [a TO b], we can construct a model for
it as

MT := {x|x ∈ Z, a ≤ x ≤ b}

Furthermore, this also tells us what our model in the case of a > b is: The
empty set.

3If these are of relevance, lists or multisets, both of which can be expressed as complicated
sets, can be used.

4Set Theory does not define any pre-existing sets other than the empty one. However,
legions of talented mathematicians have spent an entire century defining sets based on the
axioms Set Theory gave them, so we need not worry about how the sets of natural numbers
and rational numbers can be constructed.

4

Getting back to set comprehension in general: Recall that we generalised a
set comprehension expression as {X|c1, . . . , cn}. Now, X does not have to be
just a variable; it can be any mathematical expression. For example, it could
be

T ′ := {x2|x ∈ N, x < 10}

which would be the set of the square numbers of all natural numbers less than
10. The restriction x < 10 only restricts x, not x2, meaning that the resulting
set really has ten elements. If we wanted to only get all square numbers less
than ten (from natural numbers), we could write the following:

T ′′ := {x2|x ∈ N, x2 < 10}

and get
T ′′ := {0, 1, 4, 9}

Other examples are the following:

1. {x + y|x ∈ T, y ∈ T} = {0, 1, . . . , 17, 18}

2. {x|x ∈ N, x2 − 2x = 0} = {0, 2}

3. {{x, y}|x ∈ {1, 2}, y ∈ {a, b}} = {{1, a}, {1, b}, {2, a}, {2, b}}

4. {{x, y}|x ∈ {1, 2}, y ∈ {1, 2}} = {{1}, {2}, {1, 2}}

In the last two exapmles, we actually define sets of sets. This is a completely
valid construction, as sets are mathematical objects and, therefore, may be
elements of sets. The very last example again illustrates that sets may not
contain elements more than once.

Not all of these are useful models for types. Set Theory is useful for modelling
many areas beside types, and this is one of the places where this manifests.

1.2.3 Combining sets

Another way in which sets can be constructed is by taking a number of existing
sets and combining them to form a new one. For this, we have a number of
operations available, all of which we can define in terms of set comprehension:

• Intersection sets

A ∩B := {x|x ∈ A and x ∈ B}

• Union sets
A ∪B := {x|x ∈ A or x ∈ B}

• Difference sets
A \B := {x|x ∈ A but x /∈ B}

5

• Powersets
P(A) = 2A := {S|S ⊆ A}

• Separated Union sets

A]B := {〈0, x〉|x ∈ A} ∪ {〈1, x〉|x ∈ B}

• Product sets
A×B := {〈x, y〉|x ∈ A, y ∈ B}

The last two definitions make use of pairs to allow distinguishing left from
right components5; this is not a built-in construction of Set Theory. However,
to be formally correct, we can define pairs as follows:

〈a, b〉 := {{a}, {a, b}}

which allows us to recover both elements straightforwardly: If the resulting set
S = {a} only contains one element, both elements of the pair are identical: It
is 〈a, a〉. If there are two elements {a, b} = S, then we pick the element x ∈ S
such that the other element y ∈ S, with x 6= y, is contained in it: y ⊆ x leads
us to deconstruct to 〈y, x〉.

Note that some of these type construction again correspond to constructions
we also perform in programming languages:

• Intersection sets don’t really correspond to any particular type.

• Union sets seem similar to union types, but it turns out that separated
union sets are really what allows us to model these.

• Difference sets, again, are not really useful for us.

• Powersets describe a set of all subsets of some existing set. If the set in
question is the model of a type, its powerset is an exact model for a set
type based on it.

• Separated Union sets are models for both tagged and untagged union
types. For tagged union types, the extra value we attach (0 and 1 in our
example) is the tag. Untagged unions require more sophistication: With
untagged types, the actual type of the value we expect matters, but this
requires the notion of set-theoretic functions for proper modelling.

• Product sets can be used both for arrays and records. Let’s assume that
I32 is a model for a limited 32-bit integer type, and S is a model for string
types. Then I32×S makes up a nice model for a record containing both a
32 bit integer and a string, although it does not include field names. An
array of five of these integers could be modelled by I32×I32×I32×I32×I32;
in general, arrays of length n of type T can be modelled by T3n (where
we use × for multiplication).

5The construction of separated unions also assumes that natural numbers exist; we explic-
itly construct these in subsection 2.2.

6

1.3 Sizes of finite sets

For each set, we can define its size, defined as the number of distinct elements
it contains. This is also called the set’s cardinality and written as follows:

card(S) = #S = |S|

FOr finite sets, we can define cardinality recursively:

|∅| = 0
|(S ∪ {x})| = 1 + |S| ⇐⇒ x /∈ S

The last requirement, x /∈ S, is neccessary to guarantee that we really “take x
out of” the set we are considering.

The size of a set is quite important for discussing memory requirements of
elements of certain sets, when represented physically. For these purposes, the
canonic notation for cardinality can be helpful.

2 Advanced reading

The material covered in this section is relevant to the general understanding
of sets, but is not very relevant to the use of sets in the field of Programming
Languages. However, some of it can be used to model, on a mathematical level,
parts of concrete programs; this can be very useful to prove or argue about their
properties.

2.1 Sizes of infinite sets

Sizes for infinite sets have also been specified; the size of the set of natural
numbers, for example, is denoted by the following transfinite ordinal :

ℵ0 := |N| = |R|

The set of rational numbers and the set of all functions from natural numbers
to natural numbers are examples of sizes with cardinalities greater than ℵ0. For
programming language practice, these are not of importance6.

ℵn, for 0 < n, is defined as the cardinality of the “smallest” set “bigger”
than any set of cardinality ℵn−1. What this means concretely is hard to define
without giving concrete ways for comparing set sizes without their cardinality,
which is beyond the scope of this document.

6There is one exception: The theoretical field of Domain Theory goes to some lengths to
ensure that the set of functions it considers is only ℵ0 in size; this is done by constructing
functions in such a way that they correspond to only the computable functions.

7

One common assumption is the following:

|2S | = ℵn+1 ⇐⇒ |S| = ℵn

which is called the Continuum Hypothesis, and discussed in more detail in math-
ematical literature.

2.2 Representing natural numbers in Set Theory

In Set Theory, the set of natural numbers is constructed from the empty set as
follows:

0 := ∅
1 := {∅}
2 := {∅, {∅}}

...

i.e. we set zero to be the empty set, and every number above it to be the
set containing the set representations of all the numbers arithmetically below
it. This allows us to observe the followind identification for all n, m ∈ N:

n ≤ m ⇐⇒ n ⊆ m

This is often used as a justification for why we can use natural numbers within
the realm of set theory at all.

2.3 Relations as sets

Earlier on, we constructed the basic ideas behind Set Theory by expressing
relations. It turns out that another way to represent relations (or predicates) is
by describing sets. For example, we can describe a set L as follows:

L = {〈x, y〉|x, y ∈ N.x < y}

This describes a set of ordered pairs containing 〈x, y〉 precisely if they are natural
numbers, and x is less than y (or contained in y, if we recall our definition of
the natural numbers). This allows us to test for whether one natural number
a ∈ N is less than another number b ∈ N by doing the following:

a < b ⇐⇒ 〈a, b〉 ∈ L

Because of this equivalence, set theory takes the stance that (<) and L are
identical, i.e. (<) is interpreted as the set L with precisely the properties it
describes.

8

The advantage of this approach is that we can construct relations from cer-
tain sets, relations can be subsets of each other, and set constructions in general
can be applied to relations as required by concrete situations.

For example, we can now write:

• (<) ⊆ (≤)

• (≤) = (<) ∪ (=)

• (6=) = N2 \ (=)

to discuss or define binary relations on N. This principle extends straightfor-
wardly to relations of arbirary arity.

2.3.1 Properties of binary relations

For binary relations, a large number of common properties have been identified.
Below, some of the more popular ones– often used when discussing relations–
are listed.

• Symmetry: A binary relation R is said to be symmetric if and only if
aRb ⇐⇒ bRa. An example of such a relation is equality.

• Reflexivity: A binary relation R is said to be reflexive if and only if aRa
holds for all a it is defined on. Examples for this are (=) and (≤).

• Transitivity: A binary relation R is said to be transitive if, for aRb and
bRc, we know that aRc. For example, (<) is transitive; if a < b and b < c,
we also know that a < c.

• Antisymmetry: This is the opposite of symmetry: When aRb, it must
not hold that bRa. Again, (<) is an example for this.

2.4 Tuples and relations of arbitrary arity

Earlier on, we observed the usefulness of pairs for describing certain set con-
structions. Recall the construction of such a pair:

〈a, b〉 := {{a}, {a, b}}

This notion is often generalised as follows:

〈x0, . . . , xn−1, xn〉 := 〈xn, 〈. . . 〈xn−1, x 〉 . . .〉︸ ︷︷ ︸
n−1 times

to allow us to construct n-tuples for arbitrary n7.
This gives rise to relations of arbitrary arity: A set containing exclusively

n-tuples can thus be thought of as an n-ary relation.
7An alternative is to interpret tuples as functions, similar to how read-only arrays can be

thought of as functions with a weird syntax, if we ignore the implementation details.

9

2.5 Set-theoretical functions

There is a special case of relations which is often examined and used in various
contexts, namely graphs of functions. These are relations R with the property
that, if 〈x1, . . . , xn, x〉, 〈x1, . . . , xn, y〉 ∈ R, then x = y, i.e. the last entry of the
n + 1 tuples making up R is uniquely determined by the other entries.

The reason why we call these kinds of relations graphs of functions is that
they describe, as a “graph”, all of the properties of a certain function, which we
can recover from such a relation R as follows:

fR(x1, . . . , xn) := x ⇐⇒ 〈x1, . . . , xn, x〉 ∈ R

This notation– name plus ’(’ plus list of arguments plus ’)’– corresponds to
the set-theoretical notion of the application of a function to the list of arguments,
a syntax copied by many programming languages.

Note that the above equation tells us all there is to know about a function
(if we already know the relation it is based on); as such, it is not uncommon to
equate function and equation here.

2.5.1 Domain and codomain

In the above equation, we took a relation and recovered a function from it.
When doing this for a binary relation, the process is straightforward. However,
for relations of higher arity, this raises the question of where we should draw
the line between the function parameters and the values “returned” by it; in
the above example, we could have reasonably argued that the function might,
in fact, be

fR(x1, . . . , xn−1) := 〈xn, x〉 ⇐⇒ 〈x1, . . . , xn, x〉 ∈ R

if the uniqueness criterion mentioned earlier holds for x1, . . . xn−1 with respect
to 〈xn, x〉.

Given no further information, we can pick whatever is most appropriate to
the problem at hand. In order to distinguish these cases, however, we can– for
a given function– explicitly describe the set of values it may take as parameters,
and also the set of values it “maps to”, i.e. (computationally speaking) the set
representing the type of its return value.

For this, let us consider a concrete example, which may also serve to illustrate
another way to specify functions:

abs(x) :=
{
−x ⇐⇒ x < 0
x ⇐⇒ x ≥ 0

i.e. the function which computes the absolute value of numbers. If we explicitly
restrict this function to integers, we might argue that it maps the set of integers,
Z, to the set of natural numbers, N. We write this as follows:

abs: Z → N

10

and call N the image of ’abs’, and Z its inverse image or preimage8.

2.5.2 Specifying functions

In the previous sections, we saw how functions (also called “maps” or “map-
pings” in set theory) could be recovered from relations, and witnessed one ex-
ample of a function specification by case differentiation. Case differentiation
uses a syntax inverse to that of programming languages: On the left-hand side
we specify the result, whereas the right-hand side contains the condition for
achieving it. Unlike programming languages, cases may not overlap; “default”
clauses, however, are still allowed, as in the following function:

h(x) :=
{

2 ⇐⇒ x = 2
0 otherwise

which obeys the following specification:

(h(x) 6= 0 ⇐⇒ x = 2) and (h(2) = 2)

The number of cases may be arbitrary (as long as they do not overlap); their
conditions must be specified in an unambiguous manner, however.

Function definitions may also recurse, as in the following example:

x! :=
{

1 ⇐⇒ x = 0
(x− 1)! ∗ x otherwise

(where ’ !’ is the function symbol here, written in postfix notation.) Note
that not all of these specifications make sense:

f(x) :=
{

f(x) ⇐⇒ x > 0
1 otherwise

does not define anything meaningful for cases where its argument is greater than
zero. THis corresponds to a non-terminating recursive function in programming
languages.

If we do not need to distinguish cases, a short form of the above is often
appropriate:

succ:x 7→ x + 1

is often used instead of
succ(x) := x + 1

although both forms are generally acceptable.
It is also possible to write more complex patterns in the argument; for ex-

ample, we could, equivalently, specify this successor function as follows:

succ(x− 1) := x

8Other names for these are domain and codomain; in the above example, dom(abs) = Z
and cod(abs) = N can be used to describe these compactly. This nomenclature stems from
category theory and is therefore not quite as popular in set theory.

11

2.5.3 Function composition

There is one other way for constructing a function, and that is by composing
existing functions. Function composition is denoted as (◦), with f ◦g describing
a new function which first applies g to whatever it is applied to, and then f to
the result. Put another way:

(f ◦ g)(x) = f(g(x))

The requirement here is merely that the image of g is a subset of the inverse
image of f , so that f cannot be passed any values it does not handle9. So,

if f :B → C, g:A → B′ and B ⊆ B′, then (f ◦ g):A → C

2.5.4 Partial maps

In the previous example, we had a number of examples where functions did not
make sense for certain parameters. One example is the following inverse of the
successor function we described earlier:

pred: x + 1 7→ x

If we only consider this function on the set of natural numbers as its inverse
image, then this leads to a burning question: What is pred(0)? Of course, for
the natural numbers, there is no number which, when increased by one, yields
zero. As such, pred, for the inverse image N, is incomplete; we say that it is a
partial function. This is written as follows:

pred: N ⇀ N

So, partial functions, we generally replace the arrow “→” by “⇀”.
Of course, if there are partial functions, there must be functions which are

not partial. These are called total functions; succ: N → N is one example of
such a total function.

2.6 Russell’s Paradox

The fundamental question behind each mathematical theory is the following: Is
it consistent? That is, is there absolutely no way to construct a contradiction
between its axioms?

One might think that Set Theory, being the foundation of large parts of
mathematics, should better be consistent. However, when exploring this ques-
tion, Bertrand Russell came across the following set:

S = {A|A /∈ A}
9This is not a strict requirement, but, if not obeyed, it may yield a partial function,

described in subsection 2.5.4.

12

which was a perfectly legal to construct within the axioms of Set Theory,
as defined by Frege. This set, which contains all sets not contained within
themselves, now gives rise to the following question: Is S actually contained
within itself?

Theorem 1. Set Theory is inconsistent (Russell, 1901).

Proof. Assume S as defined above.

1. Assume S ∈ S. Then, because S = {A|A /∈ A}, S fails the condition of
the set comprehension; as such, S /∈ S– contradiction.

2. Assume S /∈ S. Then, because S = {A|A /∈ A}, S satisfies the condition
of the set comprehension, S ∈ S– contradiction.

By exhaustive contradiction, Set Theory cannot be consistent.
This was, of course, a serious problem. Several solutions were suggested;

today, the solution most mathematicians use is defined by the Axiom of Foun-
dation: No set may include itself as an element.

This axiom is one of the axioms of ZF and ZFC, two axiomatic specifica-
tions of Set Theory, which we list in Appendix A.

A Very Advanced Reading: A formal definition
of Set Theory

Our previous discussion of Set Theory was focussed on an informal discussion
of various properties. However, there may still be situations in which some
questions cannot be fully answered. These answers can only be given by the
axioms underlying Set Theory, i.e. the original definitions mathematicians came
up with when they defined it.

There are several definitions of Set Theory, but the most popular (and gen-
erally accepted) ones are ZF , the Zermelo-Fränkel axiomatisation, and ZFC,
which is ZF plus one axiom which is considered “required for some stuff, but
too specific for other things”.

The axioms are defined in terms of the fundamental relation between sets
and elements, (∈); in our presentation, we will also make use of (⊆) for reasons
of readability, though:

A ⊆ B ⇐⇒ ∀x ∈ A.x ∈ B

As in this definition, we make use of first-order logic to explain these matters
concisely. Readers unfamiliar with first-order logic (FOL) may find appendix B
useful and are recommended to have a look at it first.

For any given set S, the following axioms apply:

13

A.1 Axioms

1. Extensionality:

(A = B) ⇐⇒ (∀x.x ∈ A ⇐⇒ x ∈ B)

This merely repeats the rule for set equality we described earlier: Two
sets are equal if and only if they are subsets of each other.

2. Axiom of the unordered pair:

∀a, b.∃S.∀x ∈ S.(x = a) ∨ (x = b)

This axiom specifies that, for any objects a and b, we can construct a
set that contains only these two objects. Note that we do not allow any
concrete correlation between a, b and the set S = {a, b}; in particular,
we are not allowed to explicitly set a = b = S (because of the axiom of
foundation).

3. Axiom of the sum set: Assume that T is a set of sets:

T = {S0, . . . , Sn}

Then ∃S such that

S =
⋃

T = {x|∃S ∈ T.x ∈ S}

I.e. given an arbitrary (possibly infinite) number of sets, we can construct
a set containing all of the contents of these sets.

4. Axiom of the power set: Assume that S is a set, then

2S = P(S) = {A|A ⊆ S}

exists.

5. Axiom of the empty set:
∃∅.∀x.x /∈ ∅

6. Axiom of infinity: There exists a set S with the following two properties:

∅ ∈ S

∀x ∈ S.(x ∪ {x}) ∈ S.

This may seem a little strange at first, but it is nothing other than an
axiomatic specification for the construction of natural numbers given in
subsection 2.2.

14

7. Axiom of comprehension: Assume that A(x) is a predicate, i.e. “some-
thing” that is true or false depending on the concrete x passed to it. One
example would be a first-order logic formula, which could contain other
expressions, such as set containment, arithmetic properties etc. Then we
can construct a set through set comprehension as follows:

S′ = {x|A(x)}

This was discussed in more detail in subsection 1.2.2.

8. Axiom of replacement: Assume that A(x, y) is a predicate (see above)
with two arguments and S is a set, then we can construct

S′ = {z|x ∈ S, A(x, z)}

9. Axiom of foundation/regularity

S 6= ∅ ⇒ ∃x.(x ∈ S.x ∩ S = ∅)

This rarely instantiated axiom requires that sets have no infinite descend-
ing chains, i.e. we cannot build sets in the shape of a Klein bottle: S = {S}
is not a set according to this axiom, though S = {S, ∅} is.

A.2 The Axiom of Choice

The tenth axiom makes the difference between ZF and ZFC: In the former,
it is omitted, whereas the latter is defined by ZF , i.e. the nine axioms we just
described, plus the following:

S 6= ∅ ⇒ ∃fS : {S} → S

i.e., for any given set, there is a function which maps that set to an element of
that set (provided that it is nonempty). This function is generally called the
Choice function; it allows us, for any set, to pick one element out of it and to
operate on that.

This seems like a very natural thing to do, but its arbitrariness– “pick any
one” in a situation where we don’t know how many there are– may be the prime
reason behind why it is not too popular.

B First-Order Logic

There are many books introducing first-order logic; in here, we only give a
summary of the syntax (in BNF form) and briefly examine the intuitive meaning
of its constructs, namely its formulae:

15

〈Formula〉 −→ 〈Atom〉
| 〈Formula〉 ∧ 〈Formula〉
| 〈Formula〉 ∨ 〈Formula〉
| 〈Formula〉 ⇒ 〈Formula〉
| ¬ 〈Formula〉
| ∀ 〈Var〉 . 〈Formula〉
| ∃ 〈Var〉 . 〈Formula〉
| (〈Formula〉)

. . . where 〈Var〉 is a single variable, and 〈Atom〉 is either a variable or a more
complex term, such as a > b or x ∈ S.

The meanings of the individual kinds of formulae is described below:

• A ∧ B: Both A and B must be true for this to hold. For example, 1 <
2 ∧ true holds.

• A ∨ B: One of A and B or both of them must be true for this to hold.
For example, 1 > 2 ∨ 2 > 1 holds because its second component holds.

• A ⇒ B: B must be true whenever A is true. If A is not true, B may be
true or may not be true. For example, false ⇒ (0 = 1) holds, because
its left-hand part (the so-called “premise”) is false, meaning that we don’t
have to worry about its right-hand side (the “conclusion”).

• ¬A: A must NOT be true. As an example, ¬true does NOT hold.

• ∀x.A: No matter what we pick for x, A must always be true. For example,
∀x.(x ∈ N ⇒ x ≥ x) holds because its subformula (x ∈ N ⇒ x ≥ x) holds
no matter which x we pick.

• ∃x.A: If we look for it long and hard enough, we can find some x which
makes A true. As an example, ∃x.(x ∈ N ⇒ x = 2x − 12) is true, because
we can find x = 4 to make it true. On the other hand, ∃x.(x ∈ N ⇒
x + 1 = 0) is not true, because there is no such x in the set of natural
numbers.

We have informally used true and false above. These “literal values” can
be constructed without specifying them as special entities if there exists any
variable x, as follows:

true = x ∨ (¬x)
false = x ∧ (¬x)

16

Finally, note that, instead of

∀x.(x ∈ S ⇒ A)

we also tend to write
∀x ∈ S.A

for readability (analogously for “∃”). Other abbreviations, such as using “∀”
and “∃” on more than one variable at once are common, too.

C Acknowledgements

The author would like to thank Max Horn, Walter van Niftrik and Lars Skovlund
for their helpful feedback on this document.

17

