Functional Core SML Quick Reference!

1 Basic properties of SML
1. Static typing
2. Strong typing

Deep binding

=~ W

Static scoping

5. Pass-by-value parameter passing

2 Interacting with SML

The Standard ML? interactive environment is installed at /tools/cs/smlnj/bin/sml on CSEL machines.

You can interact with it as follows:
X; Evaluate expression X and infer its type (note the semicolon)

use("file.sml") Evaluate the contents of file.sml as if they had been typed in, and list all newly
defined entities by name and type

it This expression contains the result of the previous computation

(Ctrl) — (C) Abort computation/input completion (“=” prompt), return to regular (“-”)
prompt

(Ctrl) — (D) Quit SML, only works from the regular (“-”) prompt

3 Built-in Types

The following is only a selection of the most important types. A full listing is available from the
http://www.smlnj.org website.

Type name Values of this type Description

unit O The type with only one element
int ~1073741824...1073741823 Integers ("1 denotes —1)

bool true; false Booleans

char #UA"; #1M; #"\0O1" Characters

string nwe o mgts "foo"; "\t---\n" Character strings

’a list nil; [1; [1]; [true,false,true] Polymorphic lists

4 The type system

SML uses type judgements to tell the types of things: If it says z : T, then z is of type T'. These judgements
can be specified by programmers; in that case, they are called type annotations.

Judgement Description Requirements

c: T Literal value iff ¢ is a value of T'.
(1,...,2n) : Th x...xT, Tuple construction iff, for all i € {1...n}, z; : T;.
(fnz=>y):T—>U Function construction iff z:7 and y: U.

(fg):U Function application iff f: T —-U and g:T.

LCopyright ©2003 Programming Languages Group, CU Boulder
e-mail: reichenb@colorado.edu
2See http://www.smlnj.org for the full distribution and manuals.

name type semantics

- int — int Negation
abs int — int Absolute value
div) int * int — int Integer division
mod) int * int — int Modulo

* int % int — int Multiplication
+ int * int — int Addition

int * int — int Subtraction

int * int — bool
int * int — bool
int * int — bool
int * int — bool
int * int — bool

type

Less-than operator
Greater-than operator
Less-than-or-equal operator
Greater-than-or-equal operator
Equality test

semantics

bool — bool
bool * bool — bool

Negates a boolean value
Equality test

name type semantics
ord char — int Maps a character to its ASCII value
chr int — char Interprets a number as an ASCII character

char * char — bool

Equality test

8 String
name type semantics
explode string — char list Turns a string into a list of characters

implode
(")
(=)

char list — string
string — int

string * string — string
string * string — bool

Concatenates characters in a list into a string
Determines the length of a string
Concatenates two strings

Equality test (by value)

9 Lists

name type semantics

nil ‘a list Same as [] (the empty list)

hd ‘a list — 'a Returns the head (first element) of a list, raises
an exception on the empty list

tl ‘a list — a Returns the tail of a list (all elements but the
first one), raises exception on the empty list

length ‘a list — int Determines the length of a list

map (a — 'b) — ’a list — b list Applies a function to all elements in a list

rev "a list — ’a list Reverses a list

For ’a and ’b, you can substitute any type.

(’a list * ’a list) — ’a list
string * string — bool

Concatenates two lists
Equality test (by value)

10 On recursion

For solving a problem by recursion, consider that your function will examine each possible sub-problem
at some point. Find all sub-problems with immediate answers, mark these induction anchors. Find all
sub-problems whose solutions depend on solutions to their respective sub-problems; mark them induction
steps. Then determine a way to distinguish between all cases.

10.1 Induction anchors
e Answer is immediately known
e No recursion is needed

e Usually very easy to determine

10.2 Induction steps
e Answer can be derived from answers to sub-problems
e Recursion is needed

e Answer requires understanding of the relation of a problem to its immediate sub-problems

10.3 Example: Multiplication for natural numbers

We want to define multiplication for positive integers as mul: int * int -> int. We observe:
o Easy case (#1): mul(z,0) =0
e Complex case (#2): mul(z,y) =mul(z,y — 1)+ =z, ify >0
e Distinction: mul(z,y) = if y = 0 then #1, else #2

We must also make sure that we cover all cases, and that any recursion will eventually terminate.
Solution (distinguishing through pattern matching):

0 (* induction anchor *)
mul(x, y-1) + x; (* induction step *)

fun mul (x, 0)
| mul (%, y)

11 User-defined Types

All user-defined types implicitly have an implicit (=) comparison operator.

(TypeDecl) — (TypeAlias) | (Datatype)

(TypeAlias) — type (TypeAliasSeq)
(TypeAliasSeq) — (TypeAliasDecl) | (TypeAliasDecl) and (TypeAliasSeq)
(TypeAliasDecl) — (Name) = (Type)

) — datatype (DatatypeSeq)
) — (DatatypeDecl) | (DatatypeDecl) and (DatatypeSeq)
(DatatypeDecl) — (Name)=(DTOptionList)
(DTOptionListy — (DTOption) | (DTOption) | (DTOptionList)
(DTOption) (Name) | (Name) of (Type)

(Datatype
(DatatypeSeq

12 Expression Syntax

(Esxpr)

(DLst)

(Decl)

(NmOpts)

(NmOpt)

(Pat)

(TAnn)

(Type)

(Optns)

(Optn)

(Name)

—_—

(Literal)

| ¢ (Expr)y ,..., (Expr),)
| (Expr) (Op) (Expr)

| (Expr); (Expr)s

| let (DLst) in (Expr) end
| ((Expr)y ;...; (Expr),)
| case (Expr) of (Optns)

| £n (Optns)

e | (Decl) (DLst)
val (Pat) = (Expr)

| fun (NmOpts)
(NmOpt) | (NmOpt) | (NmOpts)

(Name) (Pat) (TAnn) = (Expr)

({(Pat), ..., (Pat)) (TAnn)
éName> (Pat) (TAnn)

|<Name> (TAnn)
|

| (Literal) (TAnn)
|

- (TAnn)
| : (Type)
(Name)

| (Type) * (Type)
| (Type) -> (Type)

(Optn) | (Optn) | (Optns)

(Pat) => (Expr)

alb]...

Denotes the literal value (Literal) of one of the built-
in types.

Denotes a tuple of n expressions.

Infix operator/constructor application of (Op).
Function application of (Expr); to (Expr)a.
Evaluates to whatever (Expr) evaluates if all defini-
tions in (DList) (temporarily) hold.

Computes all contained expressions in ascending se-
quence, but evaluates to (Expr),,.

Matches the value of (Expr) to one of the patterns
in (Optns) and selects the corresponding branch.
Denotes a function which evaluates to an expression
matching some pattern within (Optns).

Introduce global name(s), set to the result of the
evaluation of (Expr).

Syntactic sugar for val (Name) = fn (Opts). Also
allows recursion.

A sequence of options with function names. All func-
tion names must be the same.

If pattern (Pat) is matched, (Expr) is executed. The
type annotation (TAnn) is optional.

A pattern can be a simple name.
A tuple pattern construction.
Where (Name) is a constructor.
Literal values can form patterns.
The wildcard pattern

Optional type annotation

Any of the built-in types (int, string etc.) or any
user-defined type.

Tuple construction.

Function construction.

One or more options, separated by bars.

Evaluates to (Expr) iff the input matches (Pat) and
no previous pattern was matched.

Any name, except for the names of operators (such
as o).

