
Foundations of Programming Languages
Introduction

Prof. Dr. Christoph Reichenbach

Fachbereich 12 / Institut für Informatik

17. Oktober 2014

Contents

I Languages: structure and semantics
I Language Implementation
I Foundations of program analysis
I Foundations of software tools

What we won’t be covering

I Advanced topics in formal semantics
I Compiler backends (register selection, instruction
selection)

I Lexing and Parsing

Literature

I Programming Languages and Semantics
I “Types and Programming Languages” by Benjamin C. Pierce
I “Concepts of Programming Languages (5th or later edition)”

by Robert W. Sebesta
I Compilers and Program Analysis

I “Compilers: Principles, Techniques, and Tools (2nd Edition)”
by Alfred Aho, Monica Lam, Ravi Sethi and Jeffrey Ullman

I “Principles of Program Analysis” by Flemming Nielson, Hanne
R. Nielson and Chris Hankin

I “Modern Compiler Implementation in C/Java/ML” by Andrew
Appel

I Assembly and Machine Language
I “Computer Organization and Design: The Hardware/Software

Interface”, by David Patterson and John Hennessy
I C

I “The C Programming Language”, by Brian Kernighan and
Dennis Ritchie

I C11 specification

First two lectures

1. Today we will look at:
I syntax: Describe structure of programs
I semantics: Derive meaning from syntax

2. For next week we will look at:
I assembly/machine language: The CPU’s own language
I language implementations: Teaching the CPU higher-level
languages

Programming Languages

Why Programming Languages? (1/3)

x

I Mouse clicks & drags
I Pushing & Swiping
I Voice commands
I Text input

Many ways to talk to the computer

Why Programming Languages? (2/3)

Utility of interaction method:

I Can I interact quickly?
I Can I record my instructions?
I Can I inspect/modify the recorded instructions?
I Are my records precise?
I Can I communicate with other humans about my
records?

I Do they match a known vocabulary?

Why Programming Languages? (3/3)

Click&Drag Swipe Voice Text
Speed ++ ++ + –
Record ? ? + ++
Record Precision ? ? + ++
Record: Inspect/-
Mod

? ? – ++

Communicate
About

– – ++ ++

What do programs mean?

Let’s run the following program in some language:

print(32767 + 1);

Which of the following outputs is correct?
I 32768

I 32767 + 1

I -32768

I octopus

I no visible output

Must know the language’s syntax and semancis

Structure and Meaning

Pragmatics: Intent
“I need more space on my disk”

Semantics: Meaning
“Delete all temporary files”

Syntax: Word choice & arrangement
rm -rf /tmp/*

Semantics

Semantics: The study of meaning (logic, linguistics)

I “meaning should follow structure”
I This is a hypothesis in linguistics
(seems to hold)

I And a proposal in logic
(turns out to work reasonably well)

Example:
I If expression ‘X’ has meaning ‘v’
I And expression ‘Y’ has meaning ‘w’
I Then expression ‘(X) / (Y)’ has meaning ‘whatever
number you get when you compute v

w
’

What if ‘v’ is not a number, or ‘w’ is zero?

Backus-Naur Form: Specifying Syntax

Assume nat is a natural number:
Formalise the rules with Backus-Naur-Form (BNF):

I ‘Any number is an expression.’
I expr ::= nat

I ‘Any two expressions with a + in between is also an
expression.’

I expr ::= 〈expr〉‘+’〈expr〉
I ‘Any two expressions with a * in between is also an
expression.’

I expr ::= 〈expr〉‘*’〈expr〉

Or in short:

expr ::= nat | 〈expr〉‘+’〈expr〉 | 〈expr〉‘*’〈expr〉

Backus-Naur Form: Example

expr ::= nat | 〈expr〉‘+’〈expr〉 | 〈expr〉‘*’〈expr〉

(1+2)*3

1+(2*3)

〈expr〉

〈expr〉

1 + 2 * 3

〈expr〉

〈expr〉

alternative parse:

a parse:

Ambiguity! Parsers must know which parse we mean!

Syntax of a simple toy language

Syntax of language STOL:

expr ::= nat
| 〈expr〉‘+’〈expr〉
| ‘ifnz’〈expr〉‘then’〈expr〉‘else’〈expr〉

Examples:
I 5

I 5 + 27

I ifnz 5 + 2 then 0 else 1

Meaning of our toy language: examples

What we want the meaning to be:

5 5
5 + 27 32

ifnz 5 + 2 then 1 else 0 1

Can we describe this formally?

Defining Meaning

The principal schools of semantics:

Semantics

Denotational

Natural

Denotational

Natural

Operational

Structural

Axiomatic

Algebraic

Denotational Semantics

JpK= s

N
7

Set or ‘Domain’

Strachey brackets

〈expr〉

〈expr〉

1 + 2 * 3

I Maps program to mathematical object
I Equational theory to reason about programs

Directly maps program to its mathematical ‘meaning’

Denotational semantics of STOL

Distinguish:
I nat is set of program numbers (0, 1, 2, . . .)
(In compilers: character strings)

I N is set of natural numbers (0, 1, 2, . . .)
(In compilers: unsigned int or BigInt types)

n ∈ nat
e, e1, e2, e3 ∈ expr

JnK =

0 ⇐⇒ n = 0
1 ⇐⇒ n = 1
2 ⇐⇒ n = 2

. . .
Je1+e2K = Je1K + Je2K

Jifnz e1 then e2 else e3K =

{
Je2K ⇐⇒ Je1K 6= 0
Je3K ⇐⇒ Je1K = 0

Operational Semantics: The two branches

I Natural Semantics (Big-Step Semantics)
I p ⇓ v : p evaluates to v
I Describes complete evaluation
I Compact, useful to describe interpreters

I Structural Operational Semantics (Small-Step Semantics)
I p1 → p2: p1 evaluates one step to p2
I Captures individual evaluation steps
I Verbose/detailed, useful for formal proofs

Natural (Operational) Semantics

P1 . . . Pn

⇓e v

Program/Expression Value

Preconditions

If P1, . . . ,Pn all hold, then e evaluates to v .
I e: Arbitrary program (expression, in our example)
I v : Value that can’t be evaluated any further (natural
number, in our example)

Natural Semantics of our simple toy language

n, n1, n2, n3 ∈ nat
e, e1, e2, e3 ∈ expr

n ⇓ n
(val)

e1 ⇓ n1 e2 ⇓ n2 n = n1+n2

e1+e2 ⇓ n
(add)

e1 ⇓ n n 6= 0 e2 ⇓ n2

ifnz e1 then e2 else e3 ⇓ n2
(ifnz)

e1 ⇓ 0 e3 ⇓ n3

ifnz e1 then e2 else e3 ⇓ n3
(ifz)

Note:
I (+) is arithmetic addition
I + is a symbol in our language
I For simplicity, we set nat = N

Natural Semantics: Example

3 ⇓ 3
(val)

2 ⇓ 2
(val)

5 = 3+2
3+ 2 ⇓ 5

(add)
1 ⇓ 1 val

ifnz 3+ 2 then 1 else 0 ⇓ 1
(ifnz)

What’s the point?

I Denotational and natural semantics look very similar
I Structural differences:

I Denotational semantics describe a function J−K
I Natural semantics define a relation (⇓)
I Denotational semantics relies on mathematical domain
with underlying equational theory

I Practical differences:
I Natural Semantics requires less formal apparatus to
describe (no domains)

I Natural Semantics can’t describe partial progress in
non-terminating programs

Extending our language with ‘let’

Name bindings x ∈ name:

expr ::= nat
| 〈expr〉‘+’〈expr〉
| ‘ifnz’〈expr〉‘then’〈expr〉‘else’〈expr〉
| name
| ‘let’name‘=’〈expr〉‘in’〈expr〉

Example:
Jlet x = 2 + 3 in x + xK = 10

But what is JxK by itself?

Environments

The meaning of a variable depends on what value we bind it to.

Environment: E : name→ value

I Environments are partial functions from names to ‘values’
I In our running example, value = nat

Notation:

let E ′ = [x := v]E
then:

E ′(y) =

{
v ⇐⇒ y = x
E (y) otherwise

Environments in Denotational Semantics

Introduce E as index to semantic function:

J−KE = . . .

n ∈ nat
e, e1, e2, e3 ∈ expr

x ∈ name
JnKE = n interpreted in N

Je1+e2KE = Je1KE + Je2KE

Jifnz e1 then e2 else e3KE =

{
Je2KE ⇐⇒ Je1KE 6= 0
Je3KE ⇐⇒ Je1KE = 0

JxKE = E (x)
Jlet x = e1 in e2KE = Je2K[x :=Je1KE]E

Environments in Natural Semantics
We borrow the turnstile (`) from formal logic:

E ` n ⇓ n
(val)

E ` e1 ⇓ n1 E ` e2 ⇓ n2 n = n1+n2

E ` e1+e2 ⇓ n
(add)

E ` e1 ⇓ n n 6= 0 E ` e2 ⇓ n2

E ` ifnz e1 then e2 else e3 ⇓ n2
(ifnz)

E ` e1 ⇓ 0 E ` e3 ⇓ n3

E ` ifnz e1 then e2 else e3 ⇓ n3
(ifz)

E (x) = v

E ` x ⇓ v
(var)

E ` e1 ⇓ v ([x := v]E) ` e2 ⇓ v ′

E ` let x = e1 in e2 ⇓ v ′
(let)

Defining Meaning

Let’s consider the other schools of semantics now:

Semantics

Denotational

Natural

Operational

Structural

Axiomatic

Structural Operational Semantics (SOS)

(Definition on STOL)

e1 −→? 0
ifnz e1 then e2 else e3 −→ e3

(ifz)

e1 −→? n @n′.n −→ n′ n 6= 0
ifnz e1 then e2 else e3 −→ e2

(ifnz)

Comparison to Natural Semantics:
⇓⊆ expr× nat −→⊆ expr× expr

rhs is alwyas fully evaluated rhs can be intermediate result

SOS can capture intermediate computational results

STOL-S: State updates

I We remove let bindings and instead use:
I p := 23 Updates variable p to 23
(cf. p = 23 in Python).

I (p := 23; p) Sequence: assign, read&return
(Sequencing operation, cf. { p = 23; return p; })

Example:
(
r := 2;
r := r + r;
r + 1

) −→? 5

Stores

Store: σ : name→ value

I Analogous to environments
I Store maps names (‘name’) to ‘values’
I Again, value = nat (for now)

Stores in SOS (1)

I Recursive evaluation may update the store. . .
I . . . which the caller must be able to see.
I We adjust −→ to evaluate tuples 〈e|σ〉:
〈e|σ〉 −→ 〈v |σ′〉
means:

I Given a store σ:
I e evaluates to v , and
I σ is updated to σ′ in the process

Example:

E ` 〈e1|σ〉 −→ 〈n1|σ′〉 E ` 〈e2|σ′〉 −→ 〈n2|σ′′〉 n = n1+n2

E ` 〈e1+e2|σ〉 −→ 〈n|σ′′〉
(add)

State is threaded through the rule: evaluation order

Stores in SOS (2)

σ(x) = v

〈x |σ〉 −→ 〈v |σ′〉
(var)

〈e|σ〉 −→ 〈v |σ′〉
〈x := e|σ〉 −→ 〈0, [x := v]σ′′〉

(update)

〈e1|σ〉 −→ 〈v |σ′〉 〈e2|σ′〉 −→ 〈v ′|σ′′〉
〈(e1;e2)|σ〉 −→ 〈v ′|σ′′〉

(seq)

Return value for
assignment; choice
of ‘0’ is arbitrary

We discard the
return value
left of the se-
micolon

Analogously for the other rules.

Axiomatic Semantics

Describe statements– not good fit for our current language

{P}statement{Q}

I P : Precondition
I Q: Postcondition
I if P holds, then statement ensures that Q holds

Example:
{x ≥ 0}x := x + 1;{x > 0}

Frequently used for “design-by-contract” software
development

Comparison

I Denotational Semantics
Equational theory, also describes nontermination

I Natural Semantics
Compact, describes interpreter, doesn’t give semantics to
nonterminating programs

I Structural Operational Semantics
Describes evaluation strategy, approximates semantics for
nontermination

I Axiomatic Semantics
Describes effect of statements (before/after), no
nontermination

I Algebraic Semantics
Describes effect of operations on opaque data structures,
no nontermination

