
Foundations of Programming Languages
Expressions

Prof. Dr. Christoph Reichenbach

Fachbereich 12 / Institut für Informatik

22. Oktober 2014



Common Expressions

Some typical expressions:
I Literals: 1, "string", 1.3e-7, . . .
I Names: i, a_name, camelCaseName, lisp-name, . . .
I Composite expressions:

I subprogram calls:
factorial(7), print(32767 + 1), . . .

I Algebraic expressions (functional programming)
I Lambda expressions (functional programming):
fn x => x * x

I Tuples:
(1, 2), (1, "mixed types", 3.14), . . .

I Operator applications:
1 + 2 * 17 / -x

I Type conversions
I Expressions in parentheses: (1 + 2) * (17 / -x)

Availability varies by language



Operators

I Most languages provide binary arithmetic operators:
I +, *, /, -

I Arity: Number of parameters
I Fixity:

I Prefix: -x (unary negation)
I Infix: 1+3 (binary addition)
I Suffix: 8! (unary factorial)

I Associativity
I Precedence



Precedence

1+ 2 ∗ 3+ 4

1+ (2 ∗ 3) + 4

Multiplication has higher precedence than addition
I Languages provide precedence tables for binary infix
operators. Examples from C:

highest (expression) [...] -> .
* / %
+ -
<< >>
< <= >= >
== !=

lower . . .

Resolves ambiguity across different operators



Associativity

1 − 2 − 3 − 4

I Left-associative:

((1− 2)− 3)− 4

I Right-associative:

1− (2− (3− 4))

Resolves ambiguity among operators of same precedence



Referential Transparency

x = (a + 5) + b;
y = (a + 5) + c;

Can we simplify this by computing a + 5 only once?
I Depends on language semantics
C++: + might be overloaded and print something

I Characterised by referential transparency:
An expression is referentially transparent if we can substi-
tute the expression’s evaluation result for the expression
without changing the meaning of the program

I pure functions: subroutines whose calls are referentially
transparent

Referential transparency is fundamental in functional programming



Relational and Boolean Expressions

When is an expression true?
I Boolean literals:

true, false
I Boolean expressions:

I Numeric comparisons:
less-than, greater-than, less-than-or-equal,
greater-than-or-equal

I Combination of boolean expressions:
and, or, exclusive-or

I Negation of boolean expression
I Equality comparison

I Automatic promotion of non-boolean expressions:
I e.g. C: NULL pointer false, all other pointers true
I e.g. Python: empty container objects are false, nonempty
ones true



Equality

String s = new String("foo");
return s == "foo";

This is false in Java and many other languages!

Equality is a difficult concept!

I reference equality: point to same memory address
I value equality: structural match

I Easy for integers, strings
I User-defined data structures: user-defined equality
I Floating points: is 0.000000001 = 0.0?

I Equality is usually
I symmetric (a = b whenever b = a)
I ransitive (a = b and b = c implies a = c)
I Known exceptions:

I User-defined equality may be buggy
I Javascript’s == is intransitive by definition



Short-Circuit evaluation

Consider:

(x < 1) or isPrimeNumber(x)

If x < 1, should we call isPrimeNumber(x)?
I Result is already known (true)
I isPrimeNumber(x) might not be referentially
transparent:
Calling vs. not calling makes observable difference

I Language design choice:
I Short-circuit boolean operators:
If left operand to and/or determines outcome: Don’t
evaluate right operand

I Non-short-circuit boolean operators:
Always evaluate both operands



Conditional Expression

I Expression that allows choice between two options:
I condition (boolean expression)
I then-branch (picked if condition is true)
I else-branch (picked if condition is false)

I Examples:
I SML:
val x = if 2 > 3 then "weird" else "ok"

I Python:
x = ’weird’ if 2 > 3 else ’ok’

I C/C++/Java:
var x = (2 > 3) ? "weird" : "ok"

I Also known as ternary expression (C family), functional if

Should we evaluate both branches?



Summary

I Expressions are a rich part of most languages:
I Literals, names
I Composite expressions: subprogram calls, binary
operators, conditional expressions, . . .

I Binary infix operators are often provided:
I precedence determines which operators bind more tightly
I associativity determines evaluation order at same
precedence level

I Referencial transparency describes that an expression can
be substituted by its own evaluation result without
altering observable behaviour

I Boolean expressions allow computing a notion of ‘truth’
I Short-circuit operators combine truth values efficiently,
skipping evaluation of right-hand-side operand when
possible

I Will affect behaviour if right-hand-side is not referentially
transparent


