
Foundations of Programming Languages
Names and Bindings

Prof. Dr. Christoph Reichenbach

Fachbereich 12 / Institut für Informatik

22. Oktober 2014



Names: Sharing Information

let pi = 3.1415926535

in pi * pi

Definition

Use

I Definition binds name to meaning
I Meaning can be a value, type, function, . . .
I Valid names vary by language: camelCase, foo_bar,
lisp-name, . . .

name = identifier



Keywords and Reserved Words

Some name-shaped words have special meanings:

if, while, def, return, class, . . .

I reserved word: name with fixed purpose
I keyword: name with fixed purpose only in some contexts

FORTRAN
Integer Real ! integer variable ‘Real’
Real Integer ! floating-point var. ‘Integer’
if = 7 ! assign number to var. ‘if’

Newer languages prefer reserved words



Definitions and Bindings

Each definition introduces bindings:

C
const int i = 3;

i type int

access read-only

value 3
...

Haskell
data T = A | B

T kind data(*)

options {A, B}
A kind cons

type T

B kind cons
type T

Bindings map names to attributes



Binding Time

I language definition-time binding:
‘+’ binds to addition

I static binding:

Java
String s;

Type binding fixed (String) at compile time
I dynamic binding:

C
x = 2;
if (y > 1) x = 7;

Value binding changes at runtime

Further binding times possible



Summary

I Names allow sharing of information
I Definitions bind names to attributes
I Attributes contain many properties, such as types, values,
access rights

I Definitions can create bindings at various times:
I compile-time (static binding)
I run-time (dynamic binding)
. . .


