Foundations of Programming Languages

Variables

Prof. Dr. Christoph Reichenbach

Fachbereich 12 / Institut fiir Informatik

22. Oktober 2014

Variables and Bindings

Variables have the following bindings:

Identifier \ Identifier visibility \
Type
What kinds of things can be What is currently stored?

stored?)

Lifetime Address

When and how allocated? Where in memory is it stored?
When and how deallocated? | How can it be accessed?

Access Rights
Who has permissions to do what with it?

Languages permit restrictions to operations on variables

{ {

const int x = 1; {

int x = 1;

X = 2; }

3 ..
X = 2;

) 3
Disallowed: const removes Error: x not visible in assignment
write permissions from x ‘

V.

» Forms of access rights:
read, write, call, instantiate, get-address-off, ...

Access Rights # Visibility

Storage and Lifetime

» Each variable is encoded in memory
= must be allocated, de-allocated

allocation
lifetime< variable use

deallocation

Variable lifetime: period between allocation, deallocation

Static Variables

» Location: Static memory

v

Allocation: Compile-time
Deallocation: Never

v

v

Lifetime: Entire run-time

v

Address: Relative to $gp

v

Example:

Statle memory

int next() {
static int count = 0;
count = count + 1;
return count;

}

v

Global variables are often implemented as static variables

Stack-Dynamic Variables

Location: Stack

v

Allocation: Enter scope

v

v

Deallocation: Leave scope
Lifetime: Execution of block
Address: Relative to $fp or $sp
Examples: Static memory

v

v

v

» Local variables
» Parameters
» Temporary variables

Heap-Dynamic Variables

» Location: Heap memory

v

Allocation: Explicit or implicit

v

Deallocation: Explicit or garbage
collector

v

Lifetime: Custom

v

Address: Anywhere on the heap

v

Example:

Static memory

string* s = new string();

delete s;

Explicit Heap-Dynamic Variables

// Java
String s = mew String("foo"); | Lang. || allocate | dealloc |
String s2 = s;
C malloc | free
. . C++ new delete
» Heap-dynamic variable has no name | .5 || new (implicit)
» Variables s, s2 both reference or C# new (implicit)

point to anonymous variable
= s, s2 are reference variables

Heap variables are anonymous

Implicit Heap-Dynamic Variables

def f(x):
return [1, x, 2]

» Return value to f allocated on heap implicitly
» Deallocation implicit: Python uses automatic heap
memory management

Return value is again a nameless variable

References and Pointers

» Reference variables:
Variables that point to either:

» some other variable
» special ‘nothing’ marker (null, nil, None, NULL, ...)

» Pointer variables:

Variables that contain an arbitrary memory address
May point anywhere in memory
Dangerous when used incorrectly (hard-to-find bugs)
Vital to systems programming
Only in very few languages: Assembly, C, C++,
Modula-3, . ..

v

v

v

v

Example in C

void f(int x)
{

int y;

g

int *a =
malloc(sizeof(int));
static int c;

}
int x; R

» Variables have up to 7 bindings:

» name and scope: who can refer to them where?

» type and value: what can they store, what do they store?

» lifetime: when allocated, when deallocated?

» address: what register+offset tells me how and where to
read/write?

» access rights: who may do what to the variable?

» Three storage strategies:

» Static: fixed-size block

» Stack-dynamic: dynamic FILO memory

» Heap-dynamic: dynamic free-form memory

» Beware: some programs use multiple stacks/heaps/static
segments

