
Foundations of Programming Languages
Variables

Prof. Dr. Christoph Reichenbach

Fachbereich 12 / Institut für Informatik

22. Oktober 2014

Variables and Bindings

Variables have the following bindings:

Name
Identifier

Scope
Identifier visibility

Type
What kinds of things can be
stored?

Value
What is currently stored?

Lifetime
When and how allocated?
When and how deallocated?

Address
Where in memory is it stored?
How can it be accessed?

Access Rights
Who has permissions to do what with it?

Access Rights
Languages permit restrictions to operations on variables

Access Rights
{
const int x = 1;
...
x = 2;

}

Disallowed: const removes
write permissions from x

Visibility
{
{
int x = 1;

}
...
x = 2;

}
Error: x not visible in assignment

I Forms of access rights:
read, write, call, instantiate, get-address-off, . . .

Access Rights 6= Visibility

Storage and Lifetime

I Each variable is encoded in memory
⇒ must be allocated, de-allocated

allocation

variable use

deallocation

lifetime

Variable lifetime: period between allocation, deallocation

Static Variables

I Location: Static memory
I Allocation: Compile-time
I Deallocation: Never
I Lifetime: Entire run-time
I Address: Relative to $gp
I Example:

C
int next() {

static int count = 0;
count = count + 1;
return count;

}

Code

Static memory

Heap

Stack

Global variables are often implemented as static variables

Stack-Dynamic Variables

I Location: Stack
I Allocation: Enter scope
I Deallocation: Leave scope
I Lifetime: Execution of block
I Address: Relative to $fp or $sp
I Examples:

I Local variables
I Parameters
I Temporary variables

Code

Static memory

Heap

Stack

Heap-Dynamic Variables

I Location: Heap memory
I Allocation: Explicit or implicit
I Deallocation: Explicit or garbage
collector

I Lifetime: Custom
I Address: Anywhere on the heap
I Example:

C++
string* s = new string();
...
delete s;

Code

Static memory

Heap

Stack

Explicit Heap-Dynamic Variables

// Java
String s = new String("foo");
String s2 = s;

I Heap-dynamic variable has no name
I Variables s, s2 both reference or

point to anonymous variable
⇒ s, s2 are reference variables

Lang. allocate dealloc
C malloc free
C++ new delete
Java new (implicit)
C# new (implicit)

Heap variables are anonymous

Implicit Heap-Dynamic Variables

Python

def f(x):
return [1, x, 2]

I Return value to f allocated on heap implicitly
I Deallocation implicit: Python uses automatic heap
memory management

Return value is again a nameless variable

References and Pointers

I Reference variables:
Variables that point to either:

I some other variable
I special ‘nothing’ marker (null, nil, None, NULL, . . .)

I Pointer variables:
Variables that contain an arbitrary memory address

I May point anywhere in memory
I Dangerous when used incorrectly (hard-to-find bugs)
I Vital to systems programming
I Only in very few languages: Assembly, C, C++,
Modula-3, . . .

Example in C

void f(int x)

{
int y;

int *a =

malloc(sizeof(int));
static int c;

}
int x;

Code

Static

Heap

Stack

Summary

I Variables have up to 7 bindings:
I name and scope: who can refer to them where?
I type and value: what can they store, what do they store?
I lifetime: when allocated, when deallocated?
I address: what register+offset tells me how and where to
read/write?

I access rights: who may do what to the variable?
I Three storage strategies:

I Static: fixed-size block
I Stack-dynamic: dynamic FILO memory
I Heap-dynamic: dynamic free-form memory
I Beware: some programs use multiple stacks/heaps/static
segments

