
Foundations of Programming Languages
Implementing Iterative Control Structures

Prof. Dr. Christoph Reichenbach

Fachbereich 12 / Institut für Informatik

29. Oktober 2014

Implementing Loops

I Compilers translate loops into:
I tests
I branches

I Some complications
I Some opportunities for optimisation

2 / 6

Logical Loops with Branches

loop:

bne $t0, $t1, end

body

j loop
end:

while t0 == t1 do
body

done

invert logic

repeat

body

until t0 == t1;

loop:

body

bne $t0, $t1, loop

invert logic

Other implementation options exist
3 / 6

Logical Loops with Branches

loop:

bne $t0, $t1, end

body

j loop
end:

while t0 == t1 do
body

done

invert logic

repeat

body

until t0 == t1;

loop:

body

bne $t0, $t1, loop

invert logic

Other implementation options exist
3 / 6

Logical Loops with Branches

loop:

bne $t0, $t1, end

body

j loop
end:

while t0 == t1 do
body

done

invert logic

repeat

body

until t0 == t1;

loop:

body

bne $t0, $t1, loop

invert logic

Other implementation options exist
3 / 6

Logical Loops with Branches

loop:

bne $t0, $t1, end

body

j loop
end:

while t0 == t1 do
body

done

invert logic

repeat

body

until t0 == t1;

loop:

body

bne $t0, $t1, loop

invert logic

Other implementation options exist
3 / 6

Logical Loops with Branches

loop: bne $t0, $t1, end

body

j loop
end:

while t0 == t1 do
body

done

invert logic

repeat

body

until t0 == t1;

loop:

body

bne $t0, $t1, loop

invert logic

Other implementation options exist
3 / 6

Variable-Controlled Loops

for i := init to term

MAX_INT

do body
done;

li $t0, init

li $t1, term

loop:

bgt $t0, $t1, end

body

addi $t0, 1

j loop
end:

$t0

I MAX_INT: Maximum representable integer value
I MAX_INT + 1: overflow in last iteration
I If $t1 = MAX_INT, branch is never taken

Unless we know that term < MAX_INT, we need a
different implementation strategy

4 / 6

Variable-Controlled Loops

for i := init to term

MAX_INT

do body
done;

li $t0, init

li $t1, term

loop:

bgt $t0, $t1, end

body

addi $t0, 1

j loop
end:

$t0

I MAX_INT: Maximum representable integer value
I MAX_INT + 1: overflow in last iteration
I If $t1 = MAX_INT, branch is never taken

Unless we know that term < MAX_INT, we need a
different implementation strategy

4 / 6

Variable-Controlled Loops

for i := init to term

MAX_INT

do body
done;

li $t0, init

li $t1, term

loop: bgt $t0, $t1, end

body
addi $t0, 1

j loop
end:

$t0

I MAX_INT: Maximum representable integer value
I MAX_INT + 1: overflow in last iteration
I If $t1 = MAX_INT, branch is never taken

Unless we know that term < MAX_INT, we need a
different implementation strategy

4 / 6

Variable-Controlled Loops

for i := init to term

MAX_INT

do body
done;

li $t0, init

li $t1, term

loop: bgt $t0, $t1, end

body
addi $t0, 1

j loop
end:

$t0

I MAX_INT: Maximum representable integer value
I MAX_INT + 1: overflow in last iteration
I If $t1 = MAX_INT, branch is never taken

Unless we know that term < MAX_INT, we need a
different implementation strategy

4 / 6

Variable-Controlled Loops

for i := init to

term

MAX_INT

do body
done;

li $t0, init

li $t1, term

loop: bgt $t0, $t1, end

body
addi $t0, 1

j loop
end:

$t0

I MAX_INT: Maximum representable integer value

I MAX_INT + 1: overflow in last iteration
I If $t1 = MAX_INT, branch is never taken

Unless we know that term < MAX_INT, we need a
different implementation strategy

4 / 6

Variable-Controlled Loops

for i := init to

term

MAX_INT

do body
done;

li $t0, init

li $t1, term

loop: bgt $t0, $t1, end

body
addi $t0, 1

j loop
end:

$t0

I MAX_INT: Maximum representable integer value
I MAX_INT + 1: overflow in last iteration

I If $t1 = MAX_INT, branch is never taken

Unless we know that term < MAX_INT, we need a
different implementation strategy

4 / 6

Variable-Controlled Loops

for i := init to

term

MAX_INT

do body
done;

li $t0, init

li $t1, term

loop: bgt $t0, $t1, end

body
addi $t0, 1

j loop
end:

$t0

I MAX_INT: Maximum representable integer value
I MAX_INT + 1: overflow in last iteration
I If $t1 = MAX_INT, branch is never taken

Unless we know that term < MAX_INT, we need a
different implementation strategy

4 / 6

Unrolling Loops: an Optimisation

for i := 1 to 5
do s0 := s0 * i;
done;

li $t0, 1

li $t1, 5

loop: bgt $t0, $t1, end

mul $s0, t0

addi $t0, 1

j loop
end:

muli $s0, 1

muli $s0, 2

muli $s0, 3

muli $s0, 4

muli $s0, 5

Only feasible if initial, terminal values and step size known

5 / 6

Unrolling Loops: an Optimisation

for i := 1 to 5
do s0 := s0 * i;
done;

li $t0, 1

li $t1, 5

loop: bgt $t0, $t1, end

mul $s0, t0

addi $t0, 1

j loop
end:

muli $s0, 1

muli $s0, 2

muli $s0, 3

muli $s0, 4

muli $s0, 5

Only feasible if initial, terminal values and step size known 5 / 6

Summary

I Post-test loops:
I Single branch

I Pre-test loops:
I Branch before body, additional jump operation

I Variable-controlled:
I Branch before body, additional jump operation
I Beware: completion check nontrivial with MAX_INT

I Loop unrolling:
I Optimisation when initial/terminal loop values known

6 / 6

