
Basic Denotational Semantics
Version 3

Handout A

6th June 2007

1 Overview

Unlike Syntax, Semantics remains a topic for which there is no universally ac-
cepted description mechanism. Researchers disagree whether language seman-
tics should be described in plain English, in terms of some abstract computer,
or in one of three well-understood formal approaches.

One of these three approaches is denotational semantics, originally due to
Dana Scott and Christopher Strachey (though initial ideas can be traced back
to Frege). Compared to its alternatives, denotational semantics is the easiest
mechanism for describing the meaning of smaller programs. However, denota-
tional semantics becomes very complex for describing advanced features, such
as while loops, recursion, or goto statements.

In this handout, we will have a quick look at the basics of denotational
semantics, avoiding the more complex structures, to give a flavour of what a
formal language specification might look like.

For the following discussion, recall again the definition of meta-language

from the book: A meta-language is a language that is used to describe other
languages. Whenever we use a meta-language to describe a specific language,
we refer to that specific language as the object language.

For example, BNF is a meta-language. When we use BNF to describe the
syntax of C, then C is the object language.

As another example, we will now describe denotational semantics in plain
English. Thus, English is our meta-language, and the language of denotational
semantics is our object language.

2 Denotations

The very basic idea of denotational semantics is to translate (programming)
language constructs into mathematical objects. For example, we might translate
a C or Java expression into its mathematical denotation:

J1 + (int) 3.2K = 4

1



CSCI 3155 Handout A: Basic Denotational Semantics

Note the use of the semantic braces (also known as the interpretation function)
JK for this process: JXK = v means that the semantics of the program fragment
X is precisely the mathematical object v.

Using mathematical objects for our description gives us a wealth of existing
formalisms to draw from. For now, let us restrict ourselves to arithmetics.

The first question we are faced with is the translation of numbers. For
example, we obviously want

J17K = 17

i.e, we want to have the number 17 as the denotation of the object-language
construct 17. Achieving this denotationally with full formality is surprisingly
tricky. Let’s say that we only want to represent the first ten numbers (0 to 9).
We can achieve our translation by case distinction, i.e., by

JdK =































































0 ⇐⇒ d = 0

1 ⇐⇒ d = 1

2 ⇐⇒ d = 2

3 ⇐⇒ d = 3

4 ⇐⇒ d = 4

5 ⇐⇒ d = 5

6 ⇐⇒ d = 6

7 ⇐⇒ d = 7

8 ⇐⇒ d = 8

9 ⇐⇒ d = 9

This works, but it is not particularly elegant. It requires us to write down one
rule for every number we want to support– so, if we want to support numbers
up to 263 − 1, as supported by Java’s builtin type long, we have quite some
writing to do. For simplicity, language designers therefore tend to use informal
shortcuts: Here, we will assume a function rep as given, where rep translates a
lexeme describing a natural number into a natural number.

We can then write
JnK = rep(n)

Of course, all we have done now is to introduce a “magical” solution to our
problem: we assumed that there is some external function that happens to do
what we want to do. Even though such functions are convenient, we must only
introduce them with great care– as we will see in the next section, the meaning
of a construct is not always obvious. Fortunately, there is a sensible way of
defining the function rep, as we will see in one of the exercises.

2.1 A Calculator

Having (slightly informally) defined how we interpret numbers, we are now
ready to examine a more interesting structure. Figure 1 contains a simple BNF
grammar for a pocket calculator, with addition, negation, multiplication, and
division, and parenthesised expressions. Our aim is that this calculator should

6th June 2007 2



CSCI 3155 Handout A: Basic Denotational Semantics

〈expr〉 → number

| ( 〈expr〉 )
| 〈expr〉 + 〈expr〉
| 〈expr〉 − 〈expr〉
| 〈expr〉 ∗ 〈expr〉
| 〈expr〉/〈expr〉

Figure 1: Simple calculator language. The token number describes any integral
number.

operate on the integers, i.e., all positive or negative numbers (including zero)
without a fractional part.

Let us first consider addition. We can describe the addition of two numbers
as

Jn1 + n2K = rep(n1) + rep(n2)

where n1 and n2 are numbers.
Note how we use the addition operator of the meta-language (which is the

entirety of mathematics), “+”, to define the meaning of the addition operator
of the object language (which is our calculator language), “+”.

However, we only defined what it means for two numbers to be added
together– this is much less than what we want addition to be capable of. Look-
ing at our syntax, we see that “+” may have arbitrary expressions to its left and
right. For example, the expression (2 - 1) + (5 + 1) is syntactically allowed.

Fortunately, denotational semantics allows us to define the semantic function
recursively. We can thus express our semantics as

Je1+e2K = Je1K + Je2K

Here, our e1 and e2 may be arbitrary expressions. Similarly, we can define
the remaining operators:

Je1-e2K = Je1K − Je2K

Je1*e2K = Je1K � Je2K

Je1/e2K = ⌊
Je1K

Je2K
⌋

Note the use of floating point truncation (⌊ ⌋) on the division result to ensure
that the result is still an integer.

We have almost succeeded in giving a full denotational definition of our cal-
culator. However, we accidently forgot to give a definition of the semantics of
parentheses. This omission meant that that our semantics was partially unde-

fined : There was no definition that would tell us the meaning of, for example,

6th June 2007 3



CSCI 3155 Handout A: Basic Denotational Semantics

(1). Fortunately, our omission is easy to fix. We just add the following defini-
tion:

J(e)K = JeK

Alas, we are still not done. Another part of our language is undefined,
though in a more subtle fashion. Using the rules we have written down, we get

J1 / 0K = ⌊
1

0
⌋

However, the meaning of 1

0
is undefined in the integers. Thus, there is still

one hole in our definition that we need to close.

2.1.1 Handling Errors

Since we cannot compute a proper integer number that represents 1

0
in a mean-

ingful fashion, we can choose what we want our language/pocket calculator to
do. An easy way out would be e.g. to define

Je1/e2K =

{

0 ⇐⇒ Je2K = 0

⌊ Je1K
Je2K⌋ otherwise

Then, our calculator would always compute 0 whenever we tried to divide by
zero. In practice, language designers rarely take this approach: just returning 0
“because we have no idea what else to do” is likely to mask an error or special
case. Thus, it is better to trigger an error condition:

Je1/e2K =

{

Error ⇐⇒ Je2K = 0

⌊ Je1K
Je2K⌋ otherwise

Thus, we now have e.g.

J(1 + 2)/(1 − 1)K = Error

This error condition has a wide-reaching effect on our semantics. Previously,
our function JK always returned an integer (i.e., a number out of Z). Now, JK
can return either a number out of Z or the value Error.

However, all of our previous function definitions, such as

Je1+e2K = Je1K + Je2K

assumed that Je1K and Je2K would be a number from Z, on which addition
is defined; addition involving Error, however, is not defined. Consequently,
J(1/0) + 1K is now undefined.

To address this problem, we must update all of our previous definitions, e.g.

Je1+e2K =

{

Error ⇐⇒ Je1K = Error or Je2K = Error

Je1K + Je2K otherwise

6th June 2007 4



CSCI 3155 Handout A: Basic Denotational Semantics

〈program〉 → 〈stmtlist〉〈expr〉
〈expr〉 → number

| ( 〈expr〉 )
| 〈expr〉 + 〈expr〉
| 〈expr〉 − 〈expr〉
| 〈expr〉 ∗ 〈expr〉
| 〈expr〉/〈expr〉
| id

〈stmt〉 → id := 〈expr〉
〈stmtlist〉 → ε

| 〈stmt〉;〈stmtlist〉

Figure 2: Simple calculator language. The token number describes any integral
number.

Then, we can easily compute that

J(1/0) + 1K = Error

3 Denotations and Environments

Denotational semantics can also explain state in programs. Consider the ex-
tended calculator in Figure 2. We have updated this calculator to have a new
start symbol 〈program〉, which consists of a statement list 〈stmtlist〉 followed
by a single expression 〈expr〉. The statement list is straightforward: It may
be empty, or it may be a single statement followed (recursively) by another
statement list.

We allow only one statement, namely a variable write:

id:= 〈expr〉

The intuition behind the variable write is that it should update some vari-
able, represented by “id”, to now contain the value represented by 〈expr〉.

We also extend the definition of expr to allow identifier occurrences, i.e., “id”.
The intuition behind this construct is simply that we read out the contents of
this variable.

We now want to update our interpretation function to handle such con-
structs, so that we can e.g. compute

Ja := 1; a+2K = 3

or even
Ja := 6; b := a+1; a*bK = 42

6th June 2007 5



CSCI 3155 Handout A: Basic Denotational Semantics

3.1 Environments

However, how are we to define the meaning of a variable, just by looking at it?
If we break down an expression such as a+2, we wind up having to compute
JaK– however, we have no idea what this might mean, since we are considering
a outside of any context.

A context, then, is precisely what we need to solve the problem. We intro-
duce an environment, usually written E, which is a partial function mapping
identifiers to values. Partial functions are well-understood mathematical enti-
ties, so it is perfectly acceptable to employ them in our description. We define
the following basic operations on them:

• empty environment : [] — This describes an environment in which no
identifier is mapped to a value.

• update: E, id 7→ v — this describes an envrionment that behaves like E,
except that the identifier “id” is now mapped to v

• lookup: E(id) – this looks up “id” in the environment E, and yields
whichever value “v” the identifier maps to.

We can define the meaning of the above constructions in clear mathematical
language, which formalises what we described above:

E(id) =

{

v ⇐⇒ E = (E′, id 7→ v)
E′(id) ⇐⇒ E = (E′, id’ 7→ v) and id’ 6= id

Using environments, we can now write

E = [], a 7→ 6, b 7→ 7

to describe an environment that maps “a” to E(a) = 6 and “b” to E(b) = 7.
We can update this environment again:

E′ = E, a 7→ 0

Now, E′(b) = 7 is unchanged, but E′(a) = 0.
Note that the functions E and E′ are only partial; for example, E(c) is

undefined.

3.2 Once more, with Environments!

How can we now use environments in our definition of semantics? We simply pa-
rameterise our interpretation function by an environment. This requires minor
updates to our earlier definitions, e.g. we now replace

Je1+e2K =

{

Error ⇐⇒ Je1K = Error or Je2K = Error

Je1K + Je2K otherwise

by

6th June 2007 6



CSCI 3155 Handout A: Basic Denotational Semantics

Je1+e2K(E) =

{

Error ⇐⇒ Je1K(E) = Error or Je2K(E) = Error

Je1K(E) + Je2K(E) otherwise

After transforming the remaining operation definitions as above, we are
ready to finish the denotational description of our extended calculator.

First, consider how we now treat the occurrence of an identifier in an ex-
pression:

JidK(E) =

{

Error ⇐⇒ E(id) is undefined
E(id) otherwise

As you can see, we made sure to handle the error case where the program
tries to read a variable that is not defined.

Having handled all of expressions, we move on to statements. Since we
define statements over the nonterminal 〈stmt〉, and not over 〈expr〉, we put a
small index onto our semantic function so that we can distinguish it from the
semantic function for expressions, i.e., we write

Jid := exprKs(E) = . . .

But what are the semantics of a statement? For an expression, the semantics
are clear: we compute a number (or an error) and return it. But what does a
statement compute?

Consider what we use statements for: in this language, we only use them to
update variables. We represent variable assignments in environments. Thus, it
is natural to have statements compute environments. With that in mind, we
can finally define the semantics of statements:

Jid := exprKs(E) = E, id 7→ (JexprK(E))

That is, we compute the meaning of the expression and map the variable to
it. For example:

Ja := 1+2K(E) = E, a 7→ (J1+2K(E))

= E, a 7→ J1K(E) + J2K(E) (neither is Error)

= E, a 7→ 1 + 2

= E, a 7→ 3

For the rest, we now only need to put together the pieces. We define the
semantics of statement sequences (with another new index) as

JKs(E) = E empty statement sequence

Jstmt; stmtseqKs(E) = JstmtseqKs(JstmtKs(E))

6th June 2007 7



CSCI 3155 Handout A: Basic Denotational Semantics

The first rule just keeps the environment that was passed in. The second
rule first gives the environment to the statement, so that the statement can
update the environment, and then processes the rest of the statement sequence
with that updated environment.

Finally, we can define the semantics of a program:

Jstmtseq exprKp = JexprK(JstmtseqKs([]))

First, we compute the semantics of the statement sequence, “JstmtseqKs([])”,
with an initially empty environment. The result is some environment E which
we pass into the computation of the expression, giving us “JexprK(E)”. Thus,
we first evaluate the assignments in the statement sequence to compute our
environment, and then we use this environment in our expressions to look up
identifiers.

Here is a final example:

Ja:=2; b:=a+1; b*bKp = Jb*bK(Ja:=2; b:=a+1;Ks([]))

= Jb*bK(Jb:=a+1;Ks(Ja:=2Ks([])))

= Jb*bK(Jb:=a+1;Ks([], a 7→ J2K([])))

= Jb*bK(Jb:=a+1;Ks([], a 7→ 2))

= Jb*bK(JKs(Jb:=a+1Ks([], a 7→ 2)))

= Jb*bK(JKs([], a 7→ 2, b 7→ Ja+1K([], a 7→ 2)))

= Jb*bK(JKs([], a 7→ 2, b 7→ JaK([], a 7→ 2) + J1K([], a 7→ 2)))

= Jb*bK(JKs([], a 7→ 2, b 7→ 2 + 1))

= Jb*bK(JKs([], a 7→ 2, b 7→ 3))

= Jb*bK([], a 7→ 2, b 7→ 3)

= JbK([], a 7→ 2, b 7→ 3) ∗ JbK([], a 7→ 2, b 7→ 3)

= 3 ∗ 3

= 9

6th June 2007 8


