
Automated Software Engineering
https://doi.org/10.1007/s10515-018-0238-5

Cleaning up copy–paste clones with interactive merging

Krishna Narasimhan1 · Christoph Reichenbach2 · Julia Lawall3

Received: 19 September 2016 / Accepted: 11 June 2018
© The Author(s) 2018

Abstract
Copy-paste-modify is a form of software reuse in which developers explicitly duplicate

source code. This duplicated source code, amounting to a code clone, is adapted for

a new purpose. Copy-paste-modify is popular among software developers, however,

empirical evidence shows that it complicates software maintenance and increases the

frequency of bugs. To allow developers to use copy-paste-modify without having to

worry about these concerns, we propose an approach that automatically merges similar

pieces of code by creating suitable abstractions. Because different kinds of abstractions

may be beneficial in different contexts, our approach offers multiple abstraction mech-

anisms, which were selected based on a study of popular open-source repositories. To

demonstrate the feasibility of our approach, we have designed and implemented a pro-

totype merging tool for C++ and evaluated it on a number of code clones exhibiting

some variation, i.e., near-miss clones, in popular Open Source packages. We observed

that maintainers find our algorithmically created abstractions to be largely preferable

to the existing duplicated code.

Keywords Program analysis · Static analysis · Clone management · Source code

analysis

B Christoph Reichenbach

christoph.reichenbach@cs.lth.se

Krishna Narasimhan

knarasimhan@itemis.de

Julia Lawall

julia.lawall@lip6.fr

https://pages.lip6.fr/Julia.Lawall/

1 Itemis, Faßnachtstraße 1, 70378 Stuttgart, Germany

2 Department of Computer Science, Lund University, Lund, Sweden

3 Sorbonne University/Inria/LIP6, Paris, France

123

Automated Software Engineering

1 Introduction

As software developers add features to their programs, they often find that some

new feature is very similar to an existing one. The developers then face a choice:

they can either introduce a (possibly complex) abstraction into the existing, working

code, or copy and paste the existing code and modify the result. Introducing the

abstraction produces smaller, more maintainable code but alters existing functionality

on the operational level, carrying the risk of introducing inadvertent semantic changes.

Copying, pasting, and modifying introduces duplication in the form of near-miss
clones (type-3 clones in the terminology of Koschke et al. (2006), i.e., clones with

nontrivial differences), which tends to decrease maintainability, but avoids the risk of

damaging existing functionality (Kapser and Godfrey 2008).

Code duplication is widespread (Laguë et al. 1997; Baxter et al. 1998), especially

if we count both exact duplicates and near-miss clones. However, code duplication

is unpopular in the practitioner literature (Hunt and Thomas 1999) and “can be a

substantial problem during development and maintenance” (Juergens et al. 2009) as

“inconsistent clones constitute a source of faults”. Similarly, the C++ developers taking

part in our user study (Sect. 2.1), preferred to read code using abstraction rather than

duplication. This suggests that there is a discrepancy, which we refer to as the reuse
discrepancy, between what developers want and what they do.

Kapser and Godfrey (2008) offer one possible explanation: they claim that “code

cloning can be used as an effective and beneficial design practice” in a number of

situations, but observe that existing code bases include many clones that do not fit

their criteria for a ‘good clone’. We suggest an alternative explanation, namely that

developers view cloning as an implementation technique rather than a design practice:

they would prefer abstraction, but find copy–paste–modify safer to use. In an informal

poll, we found evidence that supports this idea.

In this paper, we look at popular open-source repositories, gather clone groups

that are representative of copy–pasted code, and study them to motivate potential

mechanisms for abstracting copy–pasted code. We propose a novel solution to the reuse

discrepancy that offers all the speed and simplicity of copy–paste–modify together

with the design benefits offered by abstraction, by designing a refactoring algorithm

to merge similar code semi-automatically. With our approach, developers reuse code

by copying, pasting, and modifying it, producing near-miss clones. Developers then

invoke our tool to merge two or more near-miss clones back into a single abstraction.

Since there may be multiple ways to introduce an abstraction, our tool may ask the

developer to choose which abstractions are preferred during the merge. Our tool is

easily extensible, so that developers may add support for their own abstractions (e.g.,

project-specific design patterns).

Conceptually, this approach can be applied at any code granularity, but we focus

on method-level clones in this work because methods represent well-recognized units

of reuse. Analogously, our approach utilizes methods as abstraction devices.

We find that our approach is not only effective at solving the aforementioned reuse

discrepancy, but also produces code that meets the quality standards of existing open-

source projects. Moreover, our approach can improve over manual abstraction in terms

of correctness: as with other automatic refactoring approaches, ensuring correctness

123

Automated Software Engineering

only requires validating the (small number of) constituents of the automatic trans-

formation mechanism (Reichenbach et al. 2009; Schäfer et al. 2009), as opposed to

the (unbounded number of) hand-written instances of manual abstractions that are

required without a tool.

Our contributions are as follows:

– We describe the results of our manual study of various clone groups in popular

open-source repositories, and identify abstraction mechanisms that may be relevant

to them.

– We present a small user study that we have carried out, in which C++ programmers

were asked to use copy–paste–modify or abstraction in a set of coding tasks. We

also present the results of a poll among these C++ programmers on their opinion

of the desirability of the various forms of produced code. While our study and poll

have only a small sample size, they suggest that developers prefer to use copy–

paste–modify for development, but find the results of abstraction to be preferable.

– We describe an algorithm that can automatically or semi-automatically merge near-

miss clones and introduce user-selected abstractions. The abstraction mechanisms

supported in our implementation of this algorithm are motivated by our manual

study of clone groups.

– We report on initial experiences with our algorithm on popular C++ projects drawn

from open-source repositories. We find that the generated merged code is of suf-

ficiently high quality to be accepted as a replacement for unmerged code in most

cases.

The rest of this paper is organized as follows. Section 2 presents our user

study and poll that further guide the design of our approach. Section 3 describes

our experiences with a manual study of clone groups from popular open-source

repositories. Section 4 describes our merge algorithm, and Section 5 gives an

overview of its implementation. Section 6 discusses the correctness of our approach

and limitations of our current implementation. Section 7 presents our evalua-

tion on various open-source software projects, and Section 8 presents a larger

example in detail. Finally, Section 9 discusses related work, and Section 10 con-

cludes.

This article is an extension of our earlier paper Narasimhan and Reichenbach (2015),

published at the conference “Automated Software Engineering”. Compared to that

work, this article adds a discussion of our initial exploration to identify important

abstraction patterns (Sect. 3), adds technical and algorithmic details regarding the

merge process (Sect. 4), presents a more general model for describing and under-

standing abstraction patterns (Sect. 4.3.3), provides a sketch of our reasoning for

the behaviour preservation property of the algorithm (Sect. 6), includes additional

insights from our evaluation, including a comparison to the clone detector NiCad

(Sect. 7), provides a detailed case study of applying our tool to additional clones

detected by NiCad (Sect. 8), and expands on the related work in depth and scope

(Sect. 9).

123

Automated Software Engineering

2 User study and informal poll

Past work on clone detection has found that clones are widespread (Laguë et al.

1997; Koschke et al. 2006; Baxter et al. 1998). We hypothesize that a key cause for

this prevalence of clones is that copy–paste–modify makes software developers more
productive, at least in the short term. To explore this hypothesis, we conducted a

preliminary, exploratory experiment with a group of graduate student volunteers.

2.1 Benefits of copy–paste–modify

For our user study, we selected five pairs of C++ methods from Google Protobuf,1

Facebook HHVM,2 and Facebook RocksDB,3 randomly choosing from the set of near-

miss clones reported by our own clone detector, described in Sect. 3. We then removed

one of the methods and asked five graduate students with 2 months, 3 months, and 1

year, 4 years, and 10 years of (self-reported) C++ programming experience, respec-

tively, to implement the missing functionality. We asked the students with 3 months

and 4 years of experience to modify the existing method to support both the existing

and the new functionality (i.e., to perform manual abstraction), and the remaining

students to use copy–paste–modify. All students worked on all five tasks.

We found that the students using copy–paste–modify were almost universally faster

in completing their objectives (2–15 min) than the students who performed manual

abstraction (7–55 min, with three tasks left incomplete). We found only one exception,

where the best-performing student using manual abstraction completed the task in the

same time as the worst-performing student using copy–paste–modify. Since the three

students using copy–paste–modify finished first and had a lot of their allocated time

still left, we asked two of the copy–paste group to abstract two of the tasks, and the third

copy–paste group user to abstract one of the tasks. Despite their familiarity with the

code, they consistently performed worse (taking more than twice as long as before)

when completing the same task again with manual abstraction. However, the same

developers showed a preference for having abstractions as a result (in 12 cases, vs. 5

for copy–paste–modify, out of 20 responses, cf. Appendix A).

While our numbers are too small to be statistically significant, they provide evidence

that copy–paste–modify can be more effective than manual abstraction at accomplish-

ing reuse at the method level.

2.2 Copy–paste–modify versus manual abstraction

To understand why copy–paste–modify might be easier, consider the function

costFunction1 from Fig. 1. This function (adapted from the OpenAge4 project)

computes the Chebyshev distance of two 2-dimensional coordinates. The implemen-

1 https://github.com/Google/protobuf

2 https://github.com/Facebook/hhvm

3 https://github.com/Facebook/rocksdb

4 http://openage.sft.mx/

123

Automated Software Engineering

cost_t costFunction1(coord start , end) {
cost_t dx = start.ne - end.ne;
cost_t dy = start.se - end.se;

return std::max(dx, dy);

}

cost_t costFunction2(coord start , end) {
cost_t dx = start.ne - end.ne;
cost_t dy = start.se - end.se;

return std::hypot(dx, dy);

}

cost_t costFunctionM(coord start , end ,
bool chebyshev) {

cost_t dx = start.ne - end.ne;
cost_t dy = start.se - end.se;
i f (chebyshev) {

return std::max(dx, dy);
} else {

return std::hypot(dx, dy);
}

}

Fig. 1 An example of merging two functions by introducing a boolean parameter and an if statement

tation consists of a function header with formal parameters, a computation for the

intermediate values dx and dy, and finally a computation of the actual Chebyshev

distance from dx and dy.

At some point, a developer decides that a different distance function is needed,

describing the beeline distance between two points (i.e.,

�
dx2 + dy2). Computing

this distance requires almost the same steps as implemented in costFunction1,

except for calling the standard library function std::hypot instead of std::max.

At this point, the developer faces a choice: she can copy and paste the existing code

into a new function (requiring only a copy, paste, and rename action) and modify the

call from std::max to std::hypot (a trivial one-word edit), or she can manu-

ally transform the function costFunction1 into a more abstract version, such as

costFunctionM (depicted on the bottom right in Fig. 1).

This transformation from the copy–pasted code to an abstracted code requires intro-

ducing a new parameter, introducing an if statement, adding a new line to handle the

new case, and updating all call sites with a new argument (perhaps using a suitable

automated refactoring). Intellectually, the developer must reason about altering the

function’s control flow, formal parameters, and any callers that expect the old func-

tionality, whereas with copy–paste–modify, they only need to concern themselves with

the exact differences between what already exists and what they now need.

We observe the need to devise an algorithm that takes the definitions of

costFunction1 and costFunction2 and abstracts them into a common

123

Automated Software Engineering

costFunctionM, taking care that any callers still continue to work correctly. Note

that there are multiple possible strategies for costFunctionM. For example, we

could pass std::hypot or std::max as function parameters, wrap them into del-

egates, or pass an enumeration parameter to support additional metrics within this

one function. The ‘best’ abstraction mechanism may depend on style preferences,

performance considerations, and plans for future extension.

3 Resolution patterns for mergingmethod-level code clones

To understand the commonly occurring differences in such clones in C++ code and to

motivate specific approaches to merging method-level clones, we conducted a study

of clone groups from top trending Open Source GitHub repositories. In this section,

we describe the set-up of the study and report on our findings and insights.

As we were not able to find a method-level clone detector for C++, we chose to

implement a simple clone detector of our own based on the robust tree edit distance

algorithm RTED (Pawlik and Augsten 2011). The tree edit distance represents a metric

for the amount of edits required to transform one tree into another, which intuitively

represents a basis for a metric of similarity for copy–paste–modified code. We adapted

the existing implementation,5 which works on trees of strings, to support the AST

nodes of the Eclipse CDT.6 RTED computes the nodes that we need to add to or

remove from one AST to obtain another; its output is an edit list, i.e., a list of delete,

insert or relabel operations:

– delete a node and connect its children to its parent, maintaining their order.

– insert a node between two neighbouring siblings

– relabel a node, essentially replacing one node by another.

Based on the results of the RTED algorithm, we calculated the edit distance, which

is the size of the edit list, between every possible pair of methods in the top 6 trending

C++ repositories in GitHub in the month of December 2014. The repositories were:

1. ForestDB, a key-value store, developed by Couchbase:

https://github.com/couchbase/forestdb

2. Google Protobuf, a library for data interchange:

https://github.com/google/protobuf

3. Open CV, a computer-vision library, originally from Intel:

https://github.com/Itseez/opencv

4. Facebook’s HHVM, a virtual machine supporting Hack and PHP:

https://github.com/facebook/hhvm

5. Facebook’s RocksDB, a persistent key-value store for fast storage environments:

https://github.com/facebook/rocksdb

6. Tiled, a map editor:

https://github.com/bjorn/tiled

5 http://tree-edit-distance.dbresearch.uni-salzburg.at/

6 https://eclipse.org/cdt/

123

Automated Software Engineering

We then used the edit distance to determine how similar the methods in each method

pair were. Specifically, we normalized the edit distance by the size of the bigger of the

two methods, as given by its number of AST nodes. This normalized edit distance is

0 whenever the methods are identical, and 1 whenever they are completely dissimilar

We configured our tree edit distance checker to only report clones with a normalized

tree edit distance below a certain threshold. For a threshold of 0.5, we observed 111

clone pairs. We further filtered our sample set by picking the top 10 clone pairs that

were closest (from both above and below) to the thresholds of 0.1, 0.2, 0.3, 0.4 and

0.5. This left us with 50 clone pairs. We manually analyzed the differences between

the individual clone pairs and identified potential ways of merging them. For example,

if the difference was between two literal expressions (constants) we could merge them

by abstracting the literal as a global variable or an extra parameter. If the difference

was between two types, we could introduce a template type argument. Some kinds of

differences could also be resolved e.g. by using a delegate (Gamma et al. 1995), but

in this work we focus on ways of merging that are non-intrusive, in the sense that they

do not require introducing new classes.

In the following, we describe the top three types of differences we observed, using

real examples from our sample set and the methods of merging we propose for those

differences. For readability, we illustrate each case using very small examples that

would probably not be worthwhile to merge in practice. We present more realistic

examples in our evaluation in Sects. 7 and 8. In the examples that follow, the code

differences and the manually generated parameters and code segments are highlighted

with a gray background.

Difference type 1: Constants Consider the following functions from Google’s Pro-

tobuf (normalized tree edit distance: 0.25)7:

// Return the name of the AssignDescriptors()
// function for a given file.
string GlobalAssignDescriptorsName(const string& filename) {

return “protobuf_AssignDesc_” + FilenameIdentifier(filename);
}

// Return the name of the ShutdownFile()
// function for a given file.
string GlobalShutdownFileName(const string& filename) {

return “protobuf_ShutdownFile_” + FilenameIdentifier(filename);
}

These functions differ only in the string “protobuf_AssignDesc_” or “protobuf_-

ShutdownFile_”, used to make up the beginning of the return value. As both strings are

constants, we can create a merged version of these functions, in which the differences

are resolved using a global variable or an extra parameter. The following code shows

the result when using a global variable. The code includes both the merged function

and the original functions modified to use the new merged version.

7 https://github.com/google/protobuf/blob/6ef984af4b0c63c1c33127a12dcfc8e6359f0c9e/src/google/

protobuf/compiler/cpp/cpp_helpers.cc

123

Automated Software Engineering

string globalvar = ””;
string mergedFunction(const string &filename) {

return globalVar + FilenameIdentifier(filename);
}

string GlobalAssignDescriptorsName(const string& filename) {
globalVar = “protobuf_AssignDesc_” ;
return mergedFunction(filename);

}

string GlobalShutdownFileName(const string& filename) {
globalVar = “protobuf_ShutDownFile_” ;
return mergedFunction(filename);

}

The following code likewise shows the result when using an extra parameter:

string mergedFunction(const string &filename, string extraParam) {
return extraParam + FilenameIdentifier(filename);

}

string GlobalAssignDescriptorsName(const string& filename) {
return mergedMethod(fileName, “protobuf_AssignDesc_”);

}

string GlobalShutdownFileName(const string& filename) {
return mergedMethod(fileName, “protobuf_ShutdownFile_”);

}

Difference type 2: Types The following code shows another pair of functions from

Google’s Protobuf8 that differ in a parameter type (normalized tree edit distance: 0.25):

string TextFormat::FieldValuePrinter::PrintInt32(int32 val) const {
return SimpleItoa(val);

}

string TextFormat::FieldValuePrinter::PrintUInt32(uint32 val) const {
return SimpleItoa(val);

}

The code below merges these functions using a template argument:

template <typename T>
string TextFormat::FieldValuePrinter::PrintInt(T val) const {

return SimpleItoa(val);
}

string TextFormat::FieldValuePrinter::PrintInt32(int32 val) const {
return PrintInt<int32>(val);

}

string TextFormat::FieldValuePrinter::PrintUInt32(uint32 val) const {
return PrintInt<uint32>(val);

}

Difference type 3: Statements The following code shows a pair of functions from

Facebook’s RocksDB9 that differ in various aspects of a statement containing a func-

tion call (normalized tree edit distance: 0.41):

8 https://github.com/google/protobuf/blob/6ef984af4b0c63c1c33127a12dcfc8e6359f0c9e/src/google/

protobuf/text_format.cc

9 https://github.com/facebook/rocksdb/blob/767777c2bd7bf4be1968dbc35452e556e781ad5f/db/c.cc

123

Automated Software Engineering

void rocksdb_writebatch_merge(rocksdb_writebatch_t* b,
const char* key, size_t klen, const char* val, size_t vlen) {

b->rep.Merge(Slice(key, klen), Slice(val, vlen));
}

void rocksdb_writebatch_merge_cf(rocksdb_writebatch_t* b,
rocksdb_column_family_handle_t* column_family,
const char* key, size_t klen, const char* val, size_t vlen) {

b->rep.Merge(column_family->rep, Slice(key, klen), Slice(val, vlen));
}

We propose two ways to merge such statement level differences, using either condi-

tionals or a switch statement. We show only the result using conditionals, below:

void abstractedFunction(rocksdb_writebatch_t* b,
rocksdb_column_family_handle_t* column_family,
const char* key, size_t klen, const char* val, size_t vlen,
int functionID) {

if(functionId == 1) {
b->rep.Merge(Slice(key, klen), Slice(val, vlen));

}
else if(functionId == 2) {
b->rep.Merge(column_family->rep, Slice(key, klen), Slice(val, vlen));

}
}

void rocksdb_writebatch_merge(rocksdb_writebatch_t* b,
const char* key, size_t klen, const char* val, size_t vlen) {

abstractedFunction(b, NULL, key, klen, val, vlen, 1);
}

void rocksdb_writebatch_merge_cf(rocksdb_writebatch_t* b,
rocksdb_column_family_handle_t* column_family,
const char* key, size_t klen, const char* val, size_t vlen) {

abstractedFunction(b, column_family, key, klen, val, vlen, 2);
}

Based on our analysis of a number of near-miss clone methods from popular open

source repositories, we gathered the most common types of code near-clone differences

in practice, i.e., constants, types and statements. We then designed strategies for

merging the clones that we observed and combined these strategies in our merging

algorithm.

4 Merging algorithm

To illustrate how our algorithm merges a collection of near-miss clone functions into

an abstracted function, we use the three functions at the top of Fig. 2 as a running

example. These synthetic functions are unlikely merge candidates, since they are both

small and rather dissimilar, but they illustrate special cases in our algorithm and show

that our approach works even for code with a large degree of variation.

4.1 Abstract syntax trees

Our algorithm works at the Abstract Syntax Tree (AST) level. Figure 3 shows simpli-

fied ASTs, omitting operators for conciseness, for the functions in Fig. 2.

123

Automated Software Engineering

void function1 () {
b(c,k(d));
y = f1;
x(z);

}

void function2 () {
b(c,k(e));
y = f2;
x(z);

}

void function3 () {
b2();
y = f3;
n();
x(z);

}

void fnMerged(int functionId , int fValue , int bParam) {
i f (functionId == 12) {

b(c, k(bParam));
}
else i f (functionId == 3) {

b2();
}
y = fValue;
x(z);

}

Fig. 2 Example of a three-way merge supported by our tool

AST1

a

b

c k

d

y

f1

x

z

AST2

a

b

c k

e

y

f2

x

z

AST3

a

b2 y

f3

n x

z

a

MP1({1,2}, {3})

b

c k

MP2({1},{2})

d e

b2

y

MP4({1},{2},{3})

f1 f2 f3

MP3({3})

n

x

z

Fig. 3 Three-way merge in AST form

In our ASTs, each node contains a label and a position. The label of a node is the

type of the node along with any content the node contains. For example, in an AST

representing the declaration int x = 10;, the node corresponding to int would have

type Type and content int, and the node corresponding to 10 would have type Literal
Expression and content 10. The position of a node is the traversal path to this node

123

Automated Software Engineering

from the root of the AST (Negara et al. 2012). The position is a list of numbers, with

each number representing the offset, starting with 1, from the leftmost child of each

node’s parent to the node. In Fig. 3, the position of the node ‘y’ in all of the ASTs is

(1, 2). The position of the node ‘e’ in AST2 is (1, 1, 2, 1).

4.2 RTED

Our algorithm relies on the RTED algorithm to identify common nodes and inserted

nodes. As described in Sect. 3, RTED computes the edit distance between two trees,

i.e., the number of edit operations that are required to transform one AST into another.

Each element of an edit list is a pair (na, nb), describing a single edit operation,

transforming node na in ASTA into node nb in ASTB . The edit list is computed based

on the tree structure and the node content, but independently of the node position. The

edit lists produced by RTED are completely symmetric, i.e., the result of applying

RTED to a pair of ASTs (ASTx , ASTy) is simply the reverse of the result of applying

RTED to (ASTy , ASTx). At most one component of an element of an edit list can be 0,

indicating that the node in the other component is inserted into its corresponding tree,

or, conversely, removed from the tree that it occurs in. For example, (a, 0) indicates

that node a is inserted into the left-hand side tree.

The edit lists of each pair of ASTs in our example in Fig. 3 are:

– Edit List of (AST1, AST2): (d, e), (f1, f2)

– Edit List of (AST2, AST3): (b, b2), (c, 0), (k, 0), (e, 0), (f2, f3), (0, n)

– Edit List of (AST1, AST3): (b, b2), (c, 0), (k, 0), (d, 0), (f1, f3), (0, n)

Based on the results of RTED, our algorithm identifies nodes that do not appear in

any edit list as being common to all ASTs. Note that this set of common nodes does

not necessarily include all subtrees that look alike. For example, consider the trees

A = a(b(treex),c) and B = a(b,c(treex)). RTED could consider ‘a’, ‘b’, and ‘c’ to be

common, or it could consider ‘a’ and ‘treex’ to be common, but it cannot consider all

of them to be common at once, due to conflicting structural constraints. In the former

case, for example, ‘treex’ would be considered to be inserted as the child of node ‘b’

in tree A and as the child of node ‘c’ in tree B.

Aligning node positions to accommodate insertions Even if seemingly identical nodes

occur in multiple ASTs, we may still need to treat them as different entities. For

example, the literal number 1 may occur many times in a given method, at different

positions. Thus, our merging algorithm considers two nodes to be equal iff they have

both the same content and the same position.

However, insertions and deletions may place nodes that we would like to be equal

in different positions in different ASTs. For instance, the position of the node ‘x’

in AST1 and AST2 is (1, 3), but in AST3 it is (1, 4). This is because the node ‘n’ is

inserted before the node ‘x’ in the edit list of (AST1, AST3) or (AST2, AST3). To reduce

the number of differences that our algorithm must resolve (and thereby produce less

complex merged code in the end), we first align the node positions in all trees, based

on the edit list.

123

Automated Software Engineering

Fig. 4 Outline of the recalculation algorithm to accommodate insertions

The procedure AlignPositions (Fig. 4) normalizes the ASTs by finding insertions

and shifting the positions of all nodes whose positions will be affected by the insertion

to the right, if necessary. AlignPositions takes as input the set of ASTs and the edit

list of each pair of ASTs, as obtained from RTED.

AlignPositions outputs a data structure Position, which is the position list of every

node in every AST. AlignPositions aligns the position of every node that was impacted

by an insertion in some AST.

AlignPositions needs to make sure the recalculation does not happen more than

once for the same insertion when comparing one AST with multiple ASTs. Consider

the three ASTs AST4 = a(b,c,d), AST5 = a(b,c,d), and AST6 = a(b,d). We see that going

from AST6 to either AST4 or AST5 will introduce the node ‘c’ before ‘d’ and thereby

shift ‘d’ to the right. If we shift ‘d’ to the right in AST6, we thereby align AST6 with

AST4 and AST5. However, since we must align AST6 with all of the other ASTs, we

must make sure to only shift ‘d’ once, and not twice (once for AST4 and once for

AST5). For that purpose we rely on the data structure Adjusted, which collects, for

each AST, the set of positions for which we have already created a ‘hole’ in that AST.

We now walk through the procedure AlignPositions line by line. Line 2 considers

every pair of ASTs, ASTx and ASTy . Every entry that has the right (nb) component as

zero implies that the node on the left hand side na is inserted intoASTx when migrating

from ASTy (Line 5). Line 6 checks the set Adjusted to test whether there are already

insertions at the position of na for ASTy , and aborts if that is the case. Otherwise,

Line 7 updates Adjusted to make sure that we will consider that position in ASTy only

once. Lines 8–11 performs the actual realignment.

Specifically, these lines update the position of every node in ASTy that occupies the

position of na , a position to the right of na , or a position below any of these positions

to the right. For example, in AST1 and AST2, the position of the node ‘x’ and the nodes

that are part of subtree rooted at ‘x’, i.e ‘z’ are (1, 3) and (1, 3, 1) respectively before

recalculation. After recalculation, the positions of node ‘x’ and ‘z’ would be (1, 4) and

(1, 4, 1) in both AST1 and AST2, to be consistent with the positions of these nodes in

AST3. Our merging algorithm then utilises these aligned positions.

123

Automated Software Engineering

4.3 Merge algorithm

Our merge algorithm is split into three high-level steps:

1. Identifying the conflict nodes and merge points
2. Constructing the merge tree

3. Applying the resolution patterns

4.3.1 Identifying the conflict nodes andmerge points

After normalizing the positions of the common nodes shared between all ASTs, our

algorithm identifies a conflict node as a node at whose position there is a different

node in at least one other AST.

Our algorithm begins by collecting the common nodes, as defined previously in

Sect. 4.2. In our example, the common nodes are ‘a’, ‘x’, ‘y’, ‘z’. Our algorithm then

maps the remaining nodes to their respective source ASTs by building a conflict node

table Tcn, as shown in Table 1. A node, as we recall, comprises its content and its

position. For example, the node with the content ‘d’ and position (1, 1, 2, 1) has the

source AST AST1. The node with content ‘b’ and position (1, 1) has two source ASTs,

AST1 and AST2.

Each position in the table Tcn corresponds to a set of conflict nodes. These nodes

must be merged in the resulting AST; we will do so later through a special AST node

that we call merge point. For example, at the position (1, 1), we will place a merge

point to merge node ‘b’ from {AST1,AST2} and node ‘b2’ from {AST3}, and we will

further place a merge point at position (1, 2, 1) between ‘f1’ from {AST1}, ‘f2’ from

{AST2} and ‘f3’ from {AST3}. Every merge point has a set of one or more choices, with

each choice consisting of a conflict node along with the source ASTs that contain the

node. For example, the merge point at (1, 1) has two choices. The first choice branches

to the node ‘b’ from {AST1, AST2} and the second choice branches to node ‘b2’dw

from {AST3}. Merge points with one choice can occur only in the case of an insertion.

Table 1 Example table of

conflict nodes (Tcn) generated

by the common difference

identification phase

Position Content Source ASTs

(1, 1, 2, 1) d AST1

(1, 1, 2, 1) e AST2

(1, 2, 1) f1 AST1

(1, 2, 1) f2 AST2

(1, 2, 1) f3 AST3

(1, 3) n AST3

(1, 1) b AST1,AST2

(1, 1) b2 AST3

(1, 1, 1) c AST1,AST2

(1, 1, 2) k AST1,AST2

123

Automated Software Engineering

4.3.2 Constructing the merge tree

Now that our algorithm has identified the positions of all conflict nodes, it constructs

the merge tree, which represents the abstraction of the near-miss clone trees that were

its inputs. Each identified conflict node position from the previous step allows us to

find all affected conflict nodes with their source ASTs. Our algorithm initially creates

an empty merge tree. It then places nodes into this tree level by level and for each

level, from left to right. The algorithm begins by placing the common nodes in their

respective positions. This process uses the positions that we aligned as part of the

normalization step in Sect. 4.2.

For every position in Tcn, our algorithm places a merge point node, with one choice

each for every conflict node in that position along with the node’s corresponding

source ASTs. Merge points are denoted as MPx(List of sets of ASTs), where each set

of ASTs inside the merge point represents a choice. For example, for the position (1,

1) discussed previously, the merge point would be MP1({1,2}, {3}), as shown at the

bottom of Fig. 3.

Our algorithm does not create merge points for positions where the nodes under

consideration are part of a subtree rooted at a previously formed merge point and are

part of the same source trees. For example, the node ‘c’ at position (1, 1, 1) will not be

part of a merge point, as ‘b’ at position (1, 1) is an ancestor to ‘c’, ‘b’ is already part

of a merge point, and ‘c’ arises from the same source trees as ‘b’, i.e., {AST1, AST2}.

4.3.3 Applying resolution patterns

Finally, we eliminate each merge point by applying a resolution pattern. A resolution

pattern is a code transformation pattern to resolve the merging of specific types of

nodes at a given merge point. Recall from the introduction that our approach works on

near-miss clone C++ methods. Thus, the resolution patterns in our approach construct

a concrete node that corresponds to a C++ code fragment that we insert at the merge

point. We use the term merge-substitution to describe the algorithm that generates

the merged node and inserts it into the merged method. This node generated by the

merge-substitution algorithm replaces the merge point in the AST.

Merge-Substitution A merge-substitution comprises a selector and selection mecha-
nism. The selector is the device that the caller of an abstraction uses to choose between

the various alternatives. The selection mechanism translates the selector into one of

the alternatives within the abstraction, in the body of the called code. To illustrate the

concept of selector and selection mechanism, consider the following example code:

void rocksdb_writebatch_merge(rocksdb_writebatch_t* b,
const char* key, size_t klen, const char* val, size_t vlen) {

b->rep.Merge(Slice(key, klen), Slice(val, vlen));
}

void rocksdb_writebatch_merge_cf(rocksdb_writebatch_t* b,
rocksdb_column_family_handle_t* column_family,
const char* key, size_t klen, const char* val, size_t vlen) {

b->rep.Merge(column_family->rep, Slice(key, klen), Slice(val, vlen));
}

123

Automated Software Engineering

and the following merged version of the code:

void abstractedFunction(rocksdb_writebatch_t* b,
rocksdb_column_family_handle_t* column_family,
const char* key, size_t klen, const char* val, size_t vlen,
int functionID) {

if(functionId == 1) {
b->rep.Merge(Slice(key, klen), Slice(val, vlen));

}
else if(functionId == 2) {
b->rep.Merge(column_family->rep, Slice(key, klen), Slice(val, vlen));

}
}

void rocksdb_writebatch_merge(rocksdb_writebatch_t* b,
const char* key, size_t klen, const char* val, size_t vlen) {

abstractedFunction(b, null, key, klen, val, vlen, 1);
}

void rocksdb_writebatch_merge_cf(rocksdb_writebatch_t* b,
rocksdb_column_family_handle_t* column_family,
const char* key, size_t klen, const char* val, size_t vlen) {

abstractedFunction(b, column_family, key, klen, val, vlen, 2);
}

In this merged function abstractedFunction, the selector is the parameter int func-
tionID added to the function mergedFunction and the selection mechanism is the

conditional that checks functionId to choose which statement to execute. Each caller

supplies an actual selector value to the formal selector variable. In this example, the

actual selectors are 1 from the function rocksdb_writebatch_merge and 2 from the

function rocksdb_writebatch_merge_cf.
Table 2 lists the resolution patterns that our prototype supports, in terms of the

node types to which they are applicable and the corresponding selector and selection

mechanisms. For example, if the nodes under consideration in a particular position are

all literals, we can introduce a formal method parameter (selection mechanism) of the

type of the literal and pass the literal as an actual method parameter (selector) value.

Another possibility, although arguably less elegant, would be to introduce a global

variable to act as selector, so that each caller can assign the actual selector value to

that variable before calling.

Table 2 Resolution patterns supported by our tool, as options presented to the user

Type of Node Selection Mechanism Selector

Statement Switch on variable Actual parameter

Conditional on variable Global variable assignment

Literal Formal parameter Actual parameter

Global variable Global variable assignment

Type Template parameter Actual type parameter

Identifier Formal parameter Actual parameter

Formal pointer parameter Actual pointer parameter

123

Automated Software Engineering

Merging parameters To generate working code, it is not sufficient to merge method

bodies; we must also merge the methods’ parameter lists. We consider two parameters

to be equal if they have the same names. If the parameters disagree on their types

or type qualifiers, we introduce a fresh template type parameter that we use as their

type. Apart from that, we construct the combined parameter list from the union of

the parameters of the merged methods. Whenever the merged methods agree on the

parameter order, we preserve the parameter order.

Handling existing call sites Whenever we merge a set of methods f1, . . . , fn into a

merged method, we do not update call sites that refer to any of f1, . . . , fn . Instead, for

each fi , we replace its body by a call to the merged function. For instance, consider

the following code:

int f1(int x) { ... }
int f2(int x, bool y) { ... }

int g() {
return f1(23) + f2(42, true);

}

When asked to merge f1 and f2, we might generate a method fnMerged through

merge-substitution and modify f1 and f2 to produce:

int fnMerged(int x, bool y, int choice) { ... }
// User choice: selection mechanism is ‘parameter’
// Merged parameter list: (int x, bool y)

int f1(int x) { return fnMerged(x, false /* default value */, 1); }
int f2(int x, bool y) { return fnMerged(x, y, 2); }

int g() {
return f1(23) + f2(42, true); // unchanged

}

The user can now use the Inline refactoring (Fowler et al. 1999) to eliminate the meth-

ods f1 and f2, or retain these methods, e.g., if external libraries might reference them.

This ensures that our approach is safe even when we lack whole-program information.

Alternatively, an IDE could offer merge-substitution with automatic inlining, though

we have not explored this option in detail.

Below, we discuss the resolution patterns that we have implemented to evaluate our

approach, and illustrate them with examples taken from open source projects hosted at

GitHub. For each resolution pattern, we describe the merge resolution and the fix-up

mechanism. We picked these four patterns based on the dominant kinds of differences

that we observed in the samples from our earlier study in Sect. 3. We found these pat-

terns to be sufficient to cover the merges that we had identified for all of these samples.

In the examples below, the nodes highlighted in red (light gray in a black and white

view) indicate the unique nodes in each function and the nodes highlighted in blue (dark

grey in a black and white view) indicate the nodes produced by our merge resolution.

4.3.4 Pattern: switch statement with extra parameter

This resolution pattern can be applied if the nodes to be merged are all statements.

This case is typical of Type 3 clones (Saha et al. 2013). We construct the following

switch statement:

123

Automated Software Engineering

Selection mechanism:

switch (choice) {
case 1: stmt1; break;
…
case k: stmtk ; break;
}

where choice is a formal selector, e.g. a fresh method

parameter, stmti is one statement alternative taken from the individual cases of the

switch statement, and i is a unique number identifying the ASTs in the filtered map.

We add teh formal selector choice as needed, e.g., as global variable or as a formal

parameter to the surrounding method or function.

Fix-up: We modify the corresponding call sites to supply their own unique actual

selector values to the formal selector.

Example: Consider the function snippets

jobject function_openROnly__JLjava(JNIEnv* env , jobject jdb ,...) {
rocksdb ::DB* db = nullptr;
rocksdb :: Status s;
/* About 50 lines of common code */

s = rocksdb::DB::OpenForReadOnly(*opt, db_path, column_families, &handles, &db);

r e t u r n null;
}

jobject function_open__JLjava(JNIEnv* env , jobject jdb ,...) {
rocksdb ::DB* db = nullptr;
rocksdb :: Status s;
/* About 50 lines of common code */

s = rocksdb::DB::Open(*opt, db_path, column_families, &handles, &db);

r e t u r n null;
}

Our pattern merges these snippets by introducing a switch statement to choose

between the two options. Modulo variable renaming and indentation, resolution pro-

duces the following output, with the generated switch statement in lines 14–20:

1 jobject function_openROnly__JLjava(JNIEnv* env , jobject jdb ,...) {
2 r e t u r n function_open_Merged__JLjava(env , jdb ,..., 1);
3 }
4

5 jobject function_open__JLjava(JNIEnv* env , jobject jdb ,...) {
6 r e t u r n function_open_Merged__JLjava(env , jdb ,.., 2);
7 }
8

9 jobject function_open_Merged__JLjava(JNIEnv* env , jobject jdb , ...,
10 i n t openType) {
11 rocksdb ::DB* db = nullptr;
12 rocksdb :: Status s;
13 /* About 50 lines of common code */

14 switch (openType) {

15 case 1:

16 s = rocksdb::DB::OpenForReadOnly(*opt, db_path, column_families, &handles,&db);

17 break;

18 case 2:

19 s = rocksdb::DB::Open(*opt, db_path, column_families, &handles,&db);

20 break; }

123

Automated Software Engineering

21 r e t u r n null;
22 }

4.3.5 Pattern: extra parameter for literal expressions

This resolution pattern can be applied if the nodes to be merged all represent literal

expressions, i.e., constant values such as 23 or true. We require that all of these con-

stants have the same type. The selection mechanism here is identical to the formal

selector: a fresh variable that directly supplies the relevant value. This variable, value,

can again be a global variable or a fresh parameter that we add as formal parameter

to the surrounding method or function. The actual selector would be any constant that

has the same type as value. If value is an ‘int’, then the constant 10 could serve as an

actual selector.

Selection mechanism: value

Fix-up: We modify existing call sites to supply their own constants as the actual param-

eter input.

Example: Consider the following function, taken from the Oracle’s Node-OracleDB

project10:

Handle<Value> Connection::GetClientId (Local<String> property,
const AccessorInfo& info) {

...
if (!njsConn->isValid_)
...

else
msg = NJSMessages::getErrorMsg(errWriteOnly, “clientId”);

NJS_SET_EXCEPTION(msg.c_str(), (int) msg.length());
return Undefined();

}

Handle<Value> Connection::GetModule (Local<String> property,
const AccessorInfo& info) {

...
if (!njsConn->isValid_)
...

else
msg = NJSMessages::getErrorMsg(errWriteOnly, “module”);

NJS_SET_EXCEPTION(msg.c_str(), (int) msg.length());
return Undefined();

}

Handle<Value> Connection::GetAction(Local<String> property,
const AccessorInfo& info) {

...
if (!njsConn->isValid_)
...

else
msg = NJSMessages::getErrorMsg(errWriteOnly, “action”);

NJS_SET_EXCEPTION(msg.c_str(), (int) msg.length());
return Undefined();

}

10 https://github.com/oracle/node-oracledb/

123

Automated Software Engineering

Our tool would identify that the calls to getClientId, getModule and getAction are

mergeable using an extra parameter. Modulo variable renaming and indentation, this

produces the following output:

1 Handle<Value> Connection::GetProperty(Local<String> property,
2 const AccessorInfo& info,

3 string errorMsg)

4 {
5 ...
6 if (!njsConn->isValid_)
7 ...
8 else
9 msg = NJSMessages::getErrorMsg(errWriteOnly, errorMsg);

10 NJS_SET_EXCEPTION(msg.c_str(), (int) msg.length());
11 return Undefined();
12 }
13

14 Handle<Value> Connection::GetClientId(Local<String> property,
15 const AccessorInfo& info)
16 {
17 return Connection::GetProperty(property, info, "clientId");
18 }
19

20 /* The methods GetModule and GetAction are analogous to GetClientId */

4.3.6 Pattern: templates for type expressions

We can apply this resolution pattern if the nodes to be merged all represent types.

We introduce a fresh variable for a template, type. We also convert the method into a

template method if it is not already one.

Selection mechanism: type. We also introduce a new formal template type parameter

(selection mechanism) type to the function definition. Any type (int, char, etc.) would

be a valid selector.

Consider the following functions taken from the RethinkDB project11:

cJSON *cJSON_CreateIntArray(int *numbers,int count) {
...
for (int i=0;a && i<count;i++) {
...

}
a->tail = p;
return a;

}

cJSON *cJSON_CreateDoubleArray(double *numbers,int count) {
...
for (int i=0;a && i<count;i++) {
...

}
a->tail = p;
return a;

}

Our tool would identify that we can merge the definitions of CreateIntArray and Cre-
ateDoubleArray by introducing a template type parameter. Modulo variable renaming

and indentation, our tool produces the following output:

11 https://github.com/rethinkdb/rethinkdb/

123

Automated Software Engineering

template<typename T> cJSON *cJSON_CreateNumArray(T *numbers,int count) {

...
for (int i=0;a && i<count;i++) {
...

}
a->tail = p;
return a;

}

cJSON *cJSON_CreateIntArray(int *numbers,int count) {
return cJSON_CreateNumArray<int>(numbers, count);

}

cJSON *cJSON_CreateDoubleArray(double *numbers,int count) {
return cJSON_CreateNumArray<double>(numbers, count);

}

4.3.7 Pattern: extra parameter for identifiers

This resolution pattern can be applied if the nodes to be merged are all variable iden-

tifiers (identifier expression nodes). We require that all of the variables be of the same

type. Again the selection mechanism is the same as the formal selector and passed

through a fresh global variable or parameter, value.

Selection mechanism: value

The resolution here is very similar to the pattern for literals, except that our algo-

rithm promotes L-values to pointer-typed parameters whenever required. We opted

for pointers instead of references to allow our approach to also work on C code. After

promotion, the formal selector variable value has the type t* if the actual selector is a

variable of type t.
Consider the following example:

int x, z;
void fn1() {

int y = x + 1 + 25;
x = 10;

}
void fn2() {

int y = z + 1 + 45;
z = 10;

}

Our algorithm handles this case by identifying, among other merge points, two different

merge points each for the identifiers x and z. Our algorithm creates a pointer parameter

to switch between x and z, and passes references. We add value as an additional formal

parameter whose type is the type ‘pointer to the type of the identifiers being merged’.

A merged version of the functions would look like this:

123

Automated Software Engineering

int x, z;
void fnMerged(int *ptr, int constant) {

int y = *ptr + 1 + constant;
*ptr = 10;

}
void fn1() {

fnMerged(&x, 25);
}
void fn2() {

fnMerged(&z, 45);
}

Fix-up: We modify the corresponding call sites to supply (the addresses of) their own

identifiers as actual parameters.

Example: Consider these function snippets from Facebook’s HHVM project12:

Type typeDiv(Type t1, Type t2) {

if (auto t = eval_const_divmod(t1, t2, cellDiv))
return *t;

return TInitPrim;

}

Type typeMod(Type t1, Type t2) {

if (auto t = eval_const_divmod(t1, t2, cellMod))
return *t;

return TInitPrim;
}

Our tool would identify that the functions typeDiv and typeMod can be merged

by introducing an extra parameter. Modulo variable renaming and indentation, this

produces the following output:

template<class CellOp> Type typeModDiv(Type t1, Type t2, CellOp fun) {

if (auto t = eval_const_divmod(t1, t2, fun))
return *t;

return TInitPrim;
}

Type typeDiv(Type t1, Type t2) { return typeModDiv(t1, t2, cellDiv); }
Type typeMod(Type t1, Type t2) { return typeModDiv(t1, t2, cellMod); }

4.4 Merging identifiers

C++ permits nested scopes to introduce multiple variables of the same name. Any

transformation that alters the scope or the name of such a variable risks introducing

name capture, where the use of one variable incorrectly references a variable declared

at a different point in the program, just because both variables had or now have the

same name:

i n t x = 1; // t1 (binding location)
i n t y = 3; // t3 (binding location)

i n t f1(v o i d)
{

12 https://github.com/facebook/hhvm/

123

Automated Software Engineering

/* Common code */
print(x); // t1

}

i n t f2(v o i d)
{

// The declaration of x here is inserted when considering the
//edit list with f1
i n t x = 2; // t2 (binding location)
/* Common code */
print(x); // t2

}

i n t f3(v o i d)
{

/* Common code */
print(y); // t3

}

Here, we cannot directly merge the print(x) statements in f1 and f2, as they refer

to different variables (identified by their labels t1, t2, t3...). However, we can merge

functions f1 and f3, since f1 is the same as f3, except for the identifier parameter of

the print function call.

Our algorithm ensures that we do not introduce accidental name capture through

the following check:

A clone group can only be merged if for every pair of ASTs in the clone group,

there are no variable declarations as part of an inserted node when considering their

edit lists (Sect. 4.2). For example, the merge between f1 and f2 would be rejected since

the declaration of x in f2 stems from an inserted statement (int x = 2;).

4.5 Optimizations

Although our core algorithm is sufficiently generic to handle many forms of merging,

our algorithm contains a few optimizations to improve the end result.

Going up the parent node

Not all kinds of differences can be resolved at the level at which they occur. Consider

the following pieces of code:

x = y + z; //A
x = y - z; //B

Even though the only difference is the operator in the binary expression on the right

hand side of the assignment, our algorithm currently supports no resolution pattern

that can resolve such a case directly. Instead, our algorithm goes up the chain of parents

in the AST until it reaches a node at which a resolution pattern applies.

In our example, our algorithm would move up one parent level in both the clones.

At this point, our algorithm would end up with two binary expressions, for which there

is still no resolution pattern. Our algorithm would then go up one more level, reaching

the assignment statement, which it can resolve through pattern Switch Statement with
Extra Parameter (Sect. 4.3.4). This pattern also serves as a general fallback, since it can

123

Automated Software Engineering

abstract most statement-level differences, excluding only those that might introduce

name capture, cf. Sect. 4.4.

In our earlier study of near-miss clones, we encountered only two kinds of expres-

sions as differences, namely literals and identifiers. Our implementation therefore

currently provides specific support for only these two kinds of differences.

Sequence of line differences

Since our algorithm operates at the AST level, it is oblivious of concrete syntactic

information. Consider the following near-miss clones.

//Clone 1 //Clone 2
common1(); common1();
statement1(); statement3();
statement2(); statement4();
common2(); common2();

Our algorithm would identify two merge points, one for the difference between

statement1 and statement3, and one for the difference between statement2 and

statement4. Applying the statement level resolution pattern twice would result in two

conditionals, or two switch statements, both of which always behave in the same way.

Our algorithm performs an optimization to resolve such contiguous differences and

treat them as one block to avoid multiple resolutions for contiguous statements. Our

algorithm considers adjacent siblings of the same block that have a merge point at the

statement level as contiguous.

Format Strings

C-style formatted printing, such as printf(“value is %d”, 10), relies on format strings

such as “string%s%d”. The meaning of these strings relies on additional parameters to

the printing operation (such as 10, in the example). For this reason, we have introduced

a heuristic that disallows abstracting over format strings as a value with pattern Extra
Parameter for Literal Expressions. With our current set of patterns, this means that

differences in format strings will make our algorithm fall back to Switch Statement
with Extra Parameter.

4.6 Beyondmethod-level merging

Although our merging approach currently operates only on the method level, we

are aware that clones happen at many levels (class, submethod, etc.). It would be

straightforward to adapt our approach to submethod-level merging, by combining

our algorithm with an automated ‘Extract Method’ refactoring (Fowler et al. 1999).

Abstracting on the class level opens new opportunities for selectors (e.g., the dynamic

type of an object) and selection mechanisms (e.g., dynamic dispatch), and we expect

that our work can be extended in different dimensions, depending on the abstraction

mechanisms provided by the target language.

123

Automated Software Engineering

5 Implementation

In this section, we give an overview of how we have implemented our approach and

how developers can use and extend the implemented tool. We begin by discussing the

libraries and frameworks we used and adapted in order to implement our tool, and

then discuss our tool’s public availability.

5.1 Libraries and frameworks used in our implementation

We have adapted an existing implementation of RTED13 to fit our CDT AST repre-

sentation. The existing implementation operated on in-order representations of trees

in which nodes are labeled with strings. We adjusted the representation of nodes to

contain information about AST node types and content.

Our merging tool is accessible to the user as an Eclipse plug-in via the Refactoring

menu. Our tool presents all the functions in the file in the currently active window

using an input selection form. The requirement for all clones to be in the same file is

a limitation of the current state of the implementation. The user marks the near-miss

clone methods to abstract using our tool’s input form. The merging tool then produces

a merged function and replaces the bodies of the existing functions with calls that

invoke the merged function with appropriate arguments.

We have implemented the distance calculator, the algorithm and the framework on

top of Eclipse CDT.14

5.2 Availability

We have made our prototype publicly available.15 From October 2015 to Novem-

ber 2017, the version of our prototype that is available as a plugin in the Eclipse

Marketplace has had 192 click-throughs and 70 installs, with no reported installation

failures.16

6 Correctness

Our algorithm has the effect of shifting the position at which various terms are placed

in the source code, and such changes may, in general, have an impact on the values

the terms produce and the side-effects they cause. In this section, we review the trans-

formations performed by our approach and discuss the possible correctness issues.

13 http://www.inf.unibz.it/dis/projects/tree-edit-distance/download.php

14 https://eclipse.org/cdt/

15 http://sepl.cs.uni-frankfurt.de/~krishnanm86/clonemergeindex.html

16 https://marketplace.eclipse.org/content/clone-abstractor-c-methods-0/metrics

123

Automated Software Engineering

6.1 Statements

Our approach moves statements into the branches of a conditional or switch statement.

By specializing the merged function with respect to each of the possible selector values,

it is easy to see that the statements are executed the same number of times as in the

original code, and have access to the same set of variables and their values. The scope

of any local variables declared by the moved statements, however, is reduced to the

conditional or switch branch; this can happen, e.g., if the developer clones a method

and changes the type of a local variable. If the scope of a declaration is shrunk in this

fashion, uses of that variable can be stranded outside, leaving to ‘undefined identifier’

errors or name capture. To detect such problems, we track all variable declarations

that have been stranded into their own local scopes as part of the merge process and

abort the merge if any such declaration exists (Sect. 4.4). We have not observed this

issue in our experiments.

6.2 Literals

Our approach moves literals from the places where they are used in the clone instances

(input methods) to the call site of the merged function. A literal, by definition, evaluates

to itself, independently of the context in which it occurs. If we choose to pass the literal

value to the merged function via a new function parameter, we furthermore have the

property that the parameter introduced by our approach to hold the value of the literal

is not modified within the merged function. Thus, the parameter’s value is the same

as that of the literal that it replaces, wherever it occurs.

6.3 Types

Our approach moves types into C++ template arguments. We choose unique names

for the template parameters and template parameters are not updateable, so at each

usage context the intended type is preserved. A limitation of this approach is that C++

does not allow us to pass void as a type parameter, so if the user wishes to merge void
functions with non-void functions, the void functions must be promoted to non-void
functions that return a dummy value first. We observed the need to handle such a

scenario only once during our experiments and we handled it manually in less than 4

min of effort (Sect. 8).

Another limitation are type incompatibilities introduced by templatisation of

merged identifiers. Consider merging two methods that take a parameter x and pass

it to a method print_string(std::string) (in one case) or to a method print_int(int) (in

the other case). Using our resolution patterns, these methods’ ‘straightforward’ merge

would be:

t e m p l a t e < c l a s s T>
v o i d merged(i n t selector) {

T x;
s w i t c h (selector) {
c a s e 0:

print_string(x); // type error if T = int
b r e a k ;

123

Automated Software Engineering

c a s e 1:
print_int(x); // type error if T = std::string
b r e a k ;

}
}

However, as the comments note, this code cannot typecheck. Specifically, a variable

must not be required to have incompatible types in different AST subtrees. We guaran-

tee this property by ensuring that newly-templatised variables only occur in common

AST nodes, but never below merge points. We reject the merge otherwise.

6.4 Global variables as selectors

We permit the use of fresh global variables as selectors. However, this is unsafe in the

presence of recursive functions: consider a scenario in which a merged function calls

itself recursively before performing a computation that depends on its global selector

variable. The recursive call may update the global selector, thereby altering how the

remaining computation is performed after the recursive call is over.

One way to address this correctness problem would be to copy the global variable

into a local temporary variable. However, this would decrease readability, and would

thus be best avoided unless necessary (e.g., using a static analysis to detect if recursion

is impossible). In our current implementation, we do not perform this transformation.

6.5 Identifiers

When two cloned functions disagree on a nonlocal variable that occurs on the left-

hand side of an assignment, our algorithm abstracts over this variable by passing

it by reference (Sect. 4.3.7). Our implementation relies on the CDT API’s isLValue
method to determine if an identifier is used in an assignment; this also covers increment

expressions and equal-to expressions, among other kinds of writes.

7 Pull requests and user study

We have evaluated our approach by exploring the following research question:

RQ: Are the abstractions performed by our algorithm of sufficient quality for pro-

duction level code?

In order to evaluate this question, we first looked for clone group candidates to

merge. We explored top trending GitHub repositories, identified potential candidates

for merging using our RTED-inspired clone detector, and used our approach to abstract

the identified candidates. We finally submitted the abstracted code back to the devel-

opers through pull requests, to see how many of them were of sufficient quality to

be introduced back into production code. We performed a total of 18 abstractions of

clone groups from the top trending GitHub repositories that we identified previously

and sent pull requests to the repositories from which we got the code. Table 3 lists the

repositories that we considered in our evaluation along with our pull request URLs, the

number of clone groups abstracted per repository, and the status of the pull requests.

123

Automated Software Engineering

7.1 Identifying andmerging clone groups

The clone group candidates for our approach are those with near-miss clones. We

started with the repositories in Table 3 and collected all method pairs belonging to

the same source file. We began by computing the edit distance of each pair. In the

previous section (Sect. 3), we defined a function pair a near-miss clone function pair

if the number of nodes in the larger of the two functions (#fnBigger) is greater than a

customizable thresholdn and if the ratio of the edit distance to #fnBigger was less than

a customizable thresholdr , where thresholdn and thresholdr are positive numbers.

We collect the near-miss clone function pairs into sets such that every function

in each set forms a near-miss clone function pair with every other function inside

the set. We call such sets of methods whose bodies are closely related to each other

‘clone groups’. We then randomly picked clone groups. Each clone group we picked

contained 2–4 functions. We then merged the clone groups, using a predetermined

resolution pattern for each node type, and submitted pull requests. We chose the

following resolution patterns for specific node type differences:

– We resolved differences in statements using a switch and an extra method parame-

ter as a selector specifying the switch branch to choose (Pattern: Switch Statement
with Extra Parameter). We could have used the conditional pattern to accomplish

the same effect.

– We resolved differences in literal expressions (constants) by passing additional

parameters (Pattern: Extra Parameter for Literal Expressions). We could have

chosen to use a global variable, but we believe that using an extra parameters

is less intrusive to the existing code and is more likely to be preferred by the

maintainers of the repositories accepting the pull requests.

– We resolved differences in types using templates (Pattern: Templates for Type
Expressions).

– We resolved differences in identifier references using additional parameters (pro-

moted to pointers if the identifiers occurred as LValues), and formal parameters

specifying the identifier or the address of the variable (Pattern: Extra Parameter
for Identifier).

We also performed minor manual changes. These include:

– Providing meaningful names for parameters. Our tool generates random fresh

names based on the position of the merge points. These names are not suitable for

production code.

– We added function prototypes to header files whenever doing so was preferred by

maintainers.

We added the function prototypes after discussion with the maintainers who had pre-

viously looked at our tool generated merges. These manual changes are standard

refactorings that are not central to our approach and could be automated (Raychev

et al. 2015).

123

Automated Software Engineering

Table 3 Repositories with their

pull request URLs
Repository Phase Clone groups Status

oracle/node-oracledb 2 3

https://github.com/oracle/node-oracledb/pull/28 Accepted

mongodb/mongo 2 2

https://github.com/mongodb/mongo/pull/927 Accepted

https://github.com/mongodb/mongo/pull/928 Accepted

rethinkdb/rethinkdb 2 2

https://github.com/rethinkdb/rethinkdb/pull/3820 Accepted

https://github.com/rethinkdb/rethinkdb/pull/3818 Accepted

cocos2d/cocos2d-x 2 2

https://github.com/cocos2d/cocos2d-x/pull/10539 Accepted

https://github.com/cocos2d/cocos2d-x/pull/10546 Accepted

ideawu/ssdb 2 1

https://github.com/ideawu/ssdb/pull/609 Rejected

facebook/rocksdb 1 1

https://github.com/facebook/rocksdb/pull/440/ Pending

openexr/openexr 1 3

https://github.com/openexr/openexr/pull/147 Pending

facebook/hhvm 1 1

https://github.com/facebook/hhvm/pull/4490 Rejected

google/protobuf 1 2

https://github.com/google/protobuf/pull/128 Accepted

https://github.com/google/protobuf/pull/126 Rejected

SFTtech/openage 1 1

https://github.com/SFTtech/openage/pull/176 Rejected

Each clone group represents one abstraction. We encourage readers to

go through the comments associated with the pull requests. While some

of the pull requests do not explicitly have their status listed as ‘merged’

in GitHub, as with the OracleDB and the MongoDB repositories, the

code has actually been merged into their existing code-bases outside

of GitHub, as indicated by the maintainer comments

7.2 Results

Our evaluation involved two phases. The first phase served as a validation to show

that our tool can abstract near-miss clones in real code. The first phase also gave us

information about what resolution patterns developers prefer. We used the insights

from the first phase in the second phase to focus our efforts on clone groups and

abstraction patterns that are of greater interest to developers. The second phase of our

evaluation illustrated the industry acceptability of the abstractions produced our tool.

We performed our initial evaluation (Phase 1) using an early version of our merging

tool that could perform only merges of pairs of methods and did not support multiple

resolution patterns for the same pair, i.e if the functions had more than one merge

point, all of these merge points had to use the same resolution pattern. During Phase 1,

123

Automated Software Engineering

Table 4 Phase 1 and 2 results

summary
Phase Submitted Accepted Rejected Pending

1 8 1 3 4

2 10 9 1 0

we ran our distance calculator on the top trending C++ repositories in GitHub for the

month of December 2014, and selected potential clone groups by setting thresholdr

to 0.5 and thresholdn to 0, meaning that we considered functions of all sizes. We sub-

mitted 8 abstractions as pull requests and only one of the clone groups was Accepted.

The results of the pull requests highlighted areas of improvement needed in our first

prototype (Table 4).

We performed our second evaluation (Phase 2) using an improved version of the

our merging tool, capable of merging an arbitrary number of methods at the same time.

This version also supported resolving multiple merge points with different resolutions

for each merge point. During Phase 2, we ran our distance calculator on the top trending

repositories for the month of February 2015. We set thresholdr to 0.15 and thresholdn

to 100, to focus on clone groups involving functions that are more similar and have a

larger size than required in Phase 1. We changed the thresholds in order to focus on

clone groups that would save more lines of code when abstracted. The clones in the

Phase 2 were very similar to each other and tied to methods of substantial size. We

then submitted 10 abstractions as pull requests, summarized in Table 4, and found that

all but one were Accepted.

We conclude that the repository maintainers found our code to be of sufficient qual-

ity (including readability and maintainability) for inclusion. Specifically, we observed

no negative comments regarding readability in any of the comments that we received.

7.3 Analysis of rejected and pending results

We present the results of the pending and rejected pull requests summarized in Table 3

and provide our analysis of the these results.

7.3.1 Pending results

We begin with the feedback to pull requests that were neither Accepted nor Rejected.

Let us first discuss the pending pull request from RocksDB. The comment from the

head maintainer of the project was:

Great stuff, now its only one commit (after the squash)! Waiting for OK from

@anon1 or @anon2 (since they maintain this code) before merging.

We interpret that the pull request was met with positive review. We did check later

with the maintainers of the repository to no avail. We suspect that developers have

many tasks and only one of them is attending to pull requests; our patch may not have

been their top priority.

123

Automated Software Engineering

Table 5 Activity of repositories

as illustrated by number of

commits in November 2017

Repository # of commits

Oracle-NodeDB 49

MongoDB 443

RethinkDB 4

Cocos-2D 7

Google-protobuf 17

The other pending pull request is from the OpenExr repository. The request merged

three clone groups at once, and received a mixture of responses. One maintainer

requested an explanation of the advantages. Another maintainer expressed skepticism

over the performance overhead of such an abstraction, as it was a low level function.

A third maintainer requested a unit test of the introduced abstraction before a merge.

We could not satisfy these requests due to a lack of understanding of the semantics of

the functions we had merged. Indeed, generating unit tests is out of the scope of our

work, but has been the subject of much recent research (Fraser and Zeller 2010). All

these exchanges took place over a 3 month period.

7.3.2 Rejected results

Of the five rejected clone group abstractions, four were rejected because the maintain-

ers felt that not enough lines were saved. We did not receive an explanation for the

rejected clone group abstraction for the ideawu/ssdb repository.

7.3.3 Behavior preservation

In order to validate if the refactored code broke the behavior of the repositories, we

ran unit tests after the application of our tool on the selected clone groups, whenever

possible. Out of the ten repositories that we submitted to, two had automatic unit tests

that ran on our pull requests without observing any errors. In addition, we explored the

unit test suites shipped with the software. For two of the projects, Google-protobuf and

Cocos-2d, we found test suites that we were able to build and run and that exercised

our merged code (which we verified by instrumenting the code); neither test suite

observed any errors.

Since the automatic pre-pull request unit testing and the manual unit-testing post-

merge did not cover all the accepted repositories, we also checked whether our changes

had survived in the projects’ code base between the pull request submission in Decem-

ber 2014 (for Phase 1, or February 2015 for Phase 2) and November 2017. We observed

that all repositories that accepted our pull requests were very active (Table 5). All but

two of the merged methods were still part of the active repositories, indicating that the

developers had not found a reason to remove them in the 35 months (for Phase 1, or 33

months for Phase 2) since we first submitted the requests. In both of the cases where

the merged method was removed, we found that its removal was part of a larger-scale

refactoring that (to the best of our understanding) was unconnected to our changes.

123

Automated Software Engineering

7.4 Comparison of our clone detectionmethod against NiCad

Our evaluation relied on a custom clone detector for two purposes:

1. to motivate our resolution patterns (Sect. 3).

2. to detect clone groups to merge as part of our pull requests (Sect. 7).

While neither of these uses of clone detection are relevant to the clone-merging

functionality that is our central contribution, they raise the question of how our custom

clone detector compares to the state of the art in clone detection. We therefore compared

our custom clone detector against NiCad (Cordy and Roy 2011), a popular clone

detection tool. We ran both tools on C code, to avoid NiCad’s limitations, using the

Bellon benchmark.17 We configured the systems to use the same detection thresholds,

though the method by which they compute these thresholds differs: NiCad counts

differences and thresholds in lines of code, while our system counts AST nodes. We

set both systems to a detection threshold of 30%, the maximum number of differing

AST nodes in our detector to 100, and the maximum number of differing lines to

10 in NiCad. NiCad detected 1382 clone pairs, while our approach detected 2042

clone pairs, including 987 (more than 70%) of the clone pairs reported by NiCad.

We hypothesize that the difference in the results primarily stems from differences in

accounting for thresholds (i.e., lines of code vs. number of AST nodes).

8 Full repository evaluation: GIT

While our earlier two sets of experiments illustrated the utility that our tool provides in

realistic scenarios, we biased our selection through the use of a clone detector whose

similarity metric is closely related to our merging algorithm. To explore whether this

bias is a concern in practice, we ran a third experiment with a mainstream off-the-shelf

clone detector. Since we were not aware of any method-level clone detector for C++,

we targeted our experiment to C code, allowing us to use NiCad (Cordy and Roy 2011)

as a clone detector. Since our system is based on the Eclipse CDT, we can also use it

on C code, as long as we disable abstraction patterns that require C++-only language

features.

As target program we therefore selected one of the top trending C repositories on

github, the Git18 revision control system. At the time of our experiment, Git had a

total of 6251 functions. We configured NiCad for our experiment as follows:

Granularity: functions

Max difference threshold: 30%

Clone size: 20–2500 lines

NiCad detected 5 clone groups. In the following, we describe each clone group,

as well as the results of merging the functions in each of these clone groups, and the

insights that we obtained from each merge.

17 http://www.softwareclones.org/research-data.php

18 https://github.com/git/git

123

Automated Software Engineering

Clone Group 1

The first clone group contained two functions, namely int_obstack_begin_1 and

int_obstack_begin, that differed by one constant (Line 11 in int_obstack_begin_1
and Line 9 in int_obstack_begin), one extra argument arg in int_obstack_begin_1
and one statement that was present only in int_obstack_begin_1 (Line 11):

1 int _obstack_begin_1
2 (struct obstack *h, int size, int alignment,
3 void *(*chunkfun) (void *, long),
4 void (*freefun) (void *, void *),
5 void *arg)
6 {
7 /*Common Lines */
8

9 h->alignment_mask = alignment - 1;
10 h->extra_arg = arg;
11 h->use_extra_arg = 1;
12

13 chunk = h->chunk = CALL_CHUNKFUN(h, h->chunk_size);
14

15 /*Common Lines */
16 }

1 int _obstack_begin
2 (struct obstack *h, int size, int alignment,
3 void *(*chunkfun) (void *, long),
4 void (*freefun) (void *, void *))
5 {
6 /*Common Lines */
7

8 h->alignment_mask = alignment - 1;
9 h->use_extra_arg = 0;

10

11 chunk = h->chunk = CALL_CHUNKFUN(h, h->chunk_size);
12

13 /*Common Lines */
14 }

Our tool resolved the difference in the constant values by introducing a new

parameter functionId as formal selector for the switch statement and an additional

parameter parameter, and using it in place of the constants. It further resolves

the optional statement by introducing a switch statement around the optional line

(h->extra_arg = arg;). It also supplied a null value to the extra paramater arg
in the call from the int_obstack_begin, where the argument did not exist

int
_obstack_begin_merged (struct obstack *h, int size, int alignment,

void *(*chunkfun) (void *, long),
void (*freefun) (void *, void *),
void *arg, int functionId, int parameter)

{
/*Common Lines */

h->alignment_mask = alignment - 1;
//Generated Switch statement
switch(functionId)
{

case 1:
h->extra_arg = arg;
break;

}

123

Automated Software Engineering

h->use_extra_arg = parameter; //Generated extra parameter

chunk = h->chunk = CALL_CHUNKFUN (h, h -> chunk_size);

/*Common Lines */
}

int_obstack_begin_1(struct obstack *h, int size, int alignment,
void *(*chunkfun) (void *, long),
void (*freefun) (void *, void *),
void *arg)

{
_obstack_begin_merged(h, size, alignment, chuckfun, freefun, arg, 1, 1);

}

int_obstack_begin(struct obstack *h, int size, int alignment,
void *(*chunkfun) (void *, long),
void (*freefun) (void *, void *))

{
_obstack_begin_merged(h, size, alignment, chuckfun, freefun, null, 2, 0);

}

Insights In this example, the values of parameter and functionId depend on each

other, meaning that the two parameters could be merged into one. We envision that a

future version of our tool can re-use selectors in multiple selection mechanisms.

Clone Group 2

The second clone group contains statement-level differences, which our tool merged

using switch statements. There is also a constant difference, for which our tool added

an extra parameter.

static void command_loop(int input_fd, int output_fd) {
char buffer[MAXCOMMAND];
while (1) {

size_t i;
if (!fgets(buffer, MAXCOMMAND - 1, stdin)) {

if (ferror(stdin))
die("Input error");

return;
}
i = strlen(buffer);
while (i > 0 && isspace(buffer[i - 1]))

buffer[--i] = 0;
if (!strcmp(buffer, "capabilities")) {

printf("*connect\n\n");
fflush(stdout);

} else if (!strncmp(buffer, "connect", 8)) {
printf("\n");
fflush(stdout);
if (bidirectional_transfer_loop(input_fd, output_fd))

die(“Copying data between descriptors failed”);
return;

} else {
die(“Bad command: %s”, buffer);

}
}

}

static int command_loop(const char * child) {
char buffer[MAXCOMMAND];
while (1) {

size_t i;
if (!fgets(buffer, MAXCOMMAND - 1, stdin)) {

123

Automated Software Engineering

if (ferror(stdin)) die("Command input error");
exit(0);

} /* Strip end of line characters. */
i = strlen(buffer);
while (i > 0 && isspace(buffer[i - 1])) buffer[--i] = 0;
if (!strcmp(buffer, "capabilities")) {

printf("*connect\n\n");
fflush(stdout);

} else if (!strncmp(buffer, "connect", 8)) {
printf("\n");
fflush(stdout);
return run_child(child, buffer + 8);

} else {
fprintf(stderr, “Bad command”);
return 1;

}
}

}

Our tool also created a union of the parameters of the two functions, mapping

the arguments to the ones in the merged function appropriately and passing dummy

values otherwise. The near-miss clone functions before our transformations have 2

parameters and 1 parameter, respectively, as in the original code, and the merged

function after transformation has 5 parameters, comprising the 3 original ones and the

2 added selectors.

s t a t i c i n t command_loop_merge (i n t input_fd , i n t output_fd , c o n s t
c h a r * child ,
c h a r * str1 , i n t functionId) {

c h a r buffer[MAXCOMMAND];

w h i l e (1) {
size_t i;
i f (!fgets(buffer , MAXCOMMAND - 1, stdin)) {

i f (ferror(stdin))
die(str1);

s w i t c h (functionId) {
c a s e 1:

r e t u r n 1;
c a s e 2:

exit (0);
}

}
/* Strip end of line characters. */
i = strlen(buffer);
w h i l e (i > 0 && isspace(buffer[i - 1]))

buffer[--i] = 0;

i f (! strcmp(buffer , "capabilities")) {
printf("*connect\n\n");
fflush(stdout);

} e l s e i f (! strncmp(buffer , "connect", 8)) {
printf("\n");
fflush(stdout);
s w i t c h (functionId) {
c a s e 1:

i f (bidirectional_transfer_loop(input_fd ,
output_fd))
die("Copying data between file descriptors

 failed");
r e t u r n ;
b r e a k ;

123

Automated Software Engineering

c a s e 2:
r e t u r n run_child(child , buffer + 8);
b r e a k ;

}

} e l s e {
s w i t c h (functionId) {
c a s e 1:

die("Bad command: %s", buffer);
b r e a k ;

c a s e 2:
fprintf(stderr , "Bad command");
r e t u r n 1;
b r e a k ;

}
}

}
}

s t a t i c v o i d command_loop(i n t input_fd , i n t output_fd) {
command_loop_merge (intput_fd , output_fd , null , "Input error", 1);

}

s t a t i c i n t command_loop(c o n s t c h a r * child) {
r e t u r n command_loop_merge (0, 0, child , "Command input error", 2);

}

Insights Since the return types of the functions in the clone group are different and C

does not support templates, we had to manually modify the code so that both functions

have the same return type. Transforming a void function so that it returns an integer

only requires adding a dummy return value, so we took this option. The manual effort

for performing this transformation took about 4 minutes.

The methods also existed in different files. We had to manually merge them in a

separate file, introduce the merged method in a common file that was included by both

the files. The overall manual effort for the process did not take more than 5 minutes

and it did not cause any compilation or test issues.

We also observed that our tool is unable to detect commonalities and differences

inside strings. For example, when generating the calls to the merged function, we

would have preferred to only pass the strings “Command input” and “Input”, instead

of the strings “Command Input Error” and “Input Error”. Such reuse would have

required us to introduce additional function call statements or formatted prints. Cur-

rently, our prototype does not support this form of merging.

Clone Group 3

The third clone group contains 6 statement level differences.

static int keyring_get(struct credential *c)
{

char *object = NULL;
GList *entries;
GnomeKeyringNetworkPasswordData *password_data;
GnomeKeyringResult result;

if (!c->protocol || !(c->host || c->path))
return EXIT_FAILURE;

/* Common Lines */

123

Automated Software Engineering

/* pick the first one from the list */
password_data = (GnomeKeyringNetworkPasswordData *)entries->data;
gnome_keyring_memory_free(c->password);
c->password = gnome_keyring_memory_strdup(password_data->password);
if (!c->username)

c->username = g_strdup(password_data->user);
gnome_keyring_network_password_list_free(entries);

return EXIT_SUCCESS;
}

static int keyring_erase(struct credential *c)
{

char *object = NULL;
GList *entries;
GnomeKeyringNetworkPasswordData *password_data;
GnomeKeyringResult result;

if (!c->protocol && !c->host && !c->path && !c->username)
return EXIT_FAILURE;

/* Common Lines */

/* pick the first one from the list (delete all matches?) */
password_data = (GnomeKeyringNetworkPasswordData *)entries->data;
result = gnome_keyring_item_delete_sync(

password_data->keyring, password_data->item_id);
gnome_keyring_network_password_list_free(entries);
if (result != GNOME_KEYRING_RESULT_OK) {

g_critical(“%s”, gnome_keyring_result_to_message(result));
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

Our tool merged the differences using switch statements. The parameter lists match,

with both near-miss clone functions containing one parameter, of the same type, and

so the abstracted method containes only one extra parameter, which allows it to switch

between the differences in the two cloned functions.

s t a t i c i n t keyring_get_merge(s t r u c t credential *c, i n t functionId) {
c h a r *object = NULL;
GList *entries;
GnomeKeyringNetworkPasswordData *password_data;
GnomeKeyringResult result;
s w i t c h (functionId) {
c a s e 1:

i f (!c->protocol || !(c->host || c->path))
r e t u r n EXIT_FAILURE;

b r e a k ;
c a s e 2:

i f (!c->protocol && !c->host && !c->path && !c->username)
r e t u r n EXIT_FAILURE;

b r e a k ;
}
/* Common Lines */

s w i t c h (functionId) {
c a s e 1:

gnome_keyring_memory_free (c->password);
c->password = gnome_keyring_memory_strdup(password_data ->

password);

i f (!c->username)
c->username = g_strdup(password_data ->user);

123

Automated Software Engineering

b r e a k ;
c a s e 2:

result = gnome_keyring_item_delete_sync(
password_data ->keyring , password_data ->item_id);

gnome_keyring_network_password_list_free(entries);

i f (result != GNOME_KEYRING_RESULT_OK) {
g_critical("%s", gnome_keyring_result_to_message
(result));
r e t u r n EXIT_FAILURE;

}
b r e a k ;

}
r e t u r n EXIT_SUCCESS;

}

s t a t i c i n t keyring_get(s t r u c t credential *c) {
r e t u r n keyring_get_merge(c, 1);

}
s t a t i c i n t keyring_erase(s t r u c t credential *c) {

r e t u r n keyring_get_merge(c, 2);
}

Insights The conditional at the beginning of each function in the clone group dif-

fers only in the conditional expression. However, our tool does not presently support

expression-level differences, unless they are on constants or identifiers. Our tool man-

ages this situation by pulling the merge point up to the smallest surrounding syntatic

entity whose AST node type we support—the surrounding if statement—and applies

a suitable abstraction pattern, as was described in Sect. 4.5.

Clone Group 4

The fourth clone group contains two statement-level differences and one statement

inserted into the near-miss clone function string_list_split_in_place. Both differences

are resolved using a switch statement.

1 int string_list_split(struct string_list *list, const char *string,
2 int delim, int maxsplit)
3 {
4 int count = 0;
5 char *p = string, *end;
6

7 if (!list->strdup_strings)
8 die(“internal error in string_list_split(): ”
9 “list->strdup_strings must be set”);

10 for (;;) {
11 count++;
12 if (maxsplit >= 0 && count > maxsplit) {
13 string_list_append(list, p);
14 return count;
15 }
16 end = strchr(p, delim);
17 if (end) {
18 string_list_append_nodup(list, xmemdupz(p, end - p));
19 p = end + 1;
20 } else {
21 string_list_append(list, p);
22 return count;
23 }
24 }
25 }

123

Automated Software Engineering

1 int string_list_split_in_place(struct string_list *list, char * string,
2 int delim, int maxsplit) {
3 int count = 0;
4 char * p = string, * end;
5 if (list->strdup_strings)
6 die(“internal error in string_list_split_in_place(): ”
7 “list->strdup_strings must not be set”);
8 for (;;) {
9 count++;

10 if (maxsplit >= 0 && count > maxsplit) {
11 string_list_append(list, p);
12 return count;
13 }
14 end = strchr(p, delim);
15 if (end) {
16 *end = ’\0’;
17 string_list_append(list, p);
18 p = end + 1;
19 } else {
20 string_list_append(list, p);
21 return count;
22 }
23 }
24 }

int string_list_split_merge(struct string_list *list,
const char *string,

int delim, int maxsplit, int functionId) {
int count = 0;
char *p = string, *end;
switch (functionId) {
case 1:

if (!list->strdup_strings)
die("internal error in string_list_split(): "

"list->strdup_strings must be set");

break;
case 2:

if (list->strdup_strings)
die("internal error in string_list_split_in_place(): "

"list->strdup_strings must not be set");
break;

}
for (;;) {

count++;
if (maxsplit >= 0 && count > maxsplit) {

string_list_append(list, p);
return count;

}
end = strchr(p, delim);
if (end) {

switch (functionId) {
case 1:

string_list_append_nodup(list, xmemdupz(p, end - p));
break;

case 2:
*end = ’\0’;
string_list_append(list, p);
break;

};
p = end + 1;

} else {
string_list_append(list, p);
return count;

}
}

}

123

Automated Software Engineering

int string_list_split(struct string_list *list,
const char *string,

int delim, int maxsplit) {
string_list_split_merge(list, string, delim, maxsplit, 1);

}
int string_list_split_in_place(struct string_list *list,

const char *string,
int delim, int maxsplit) {

string_list_split_merge(list, string, delim, maxsplit, 2);
}

Insights Although the tool detects the second difference as one statement in the left

hand side at line 18 of the function string_list_split and two statements at lines 15 and

16 of string_list_split_in_place, the post processing phase merges the two statement

differences into a single one as they occur one after the other.

Clone Group 5

The fifth clone group contains two statement-level differences and one constant dif-

ference.

i n t git_inflate(git_zstream *strm , i n t flush)
{

i n t status;

f o r (;;) {
zlib_pre_call(strm);
/* Never say Z_FINISH unless we are feeding everything */
status = inflate(&strm->z,

(strm->z.avail_in != strm->avail_in)
? 0 : flush);

i f (status == Z_MEM_ERROR)
die("inflate: out of memory");

zlib_post_call(strm);

/*
* Let zlib work another round , while we can still
* make progress.
*/

i f ((strm ->avail_out && !strm ->z.avail_out) &&
(status == Z_OK || status == Z_BUF_ERROR))
c o n t i n u e ;

b r e a k ;
}

s w i t c h (status) {
/* Z_BUF_ERROR: normal , needs more space in the output buffer */
c a s e Z_BUF_ERROR:
c a s e Z_OK:
c a s e Z_STREAM_END:

r e t u r n status;
d e f a u l t :

b r e a k ;
}
error(“inflate: %s (%s)”, zerr_to_string(status),

strm->z.msg ? strm->z.msg : “no message”);
r e t u r n status;

}

i n t git_deflate(git_zstream *strm , i n t flush)
{

i n t status;

123

Automated Software Engineering

f o r (;;) {
zlib_pre_call(strm);

/* Never say Z_FINISH unless we are feeding everything */
status = deflate(&strm->z,

(strm->z.avail_in != strm->avail_in)
? 0 : flush);

i f (status == Z_MEM_ERROR)
die("deflate: out of memory");

zlib_post_call(strm);

/*
* Let zlib work another round , while we can still
* make progress.
*/

i f ((strm ->avail_out && !strm ->z.avail_out) &&
(status == Z_OK || status == Z_BUF_ERROR))
c o n t i n u e ;

b r e a k ;
}

s w i t c h (status) {
/* Z_BUF_ERROR: normal , needs more space in the output buffer */
c a s e Z_BUF_ERROR:
c a s e Z_OK:
c a s e Z_STREAM_END:

r e t u r n status;
d e f a u l t :

b r e a k ;
}
error(“deflate: %s (%s)”, zerr_to_string(status),

strm->z.msg ? strm->z.msg : “no message”);
r e t u r n status;

}

Our tool introduces two extra parameters, one, functionId, to switch between the

statements based on which clone function calling the merged function, and another,

str1, which our tool detects is of type char*.

i n t git_inflate_deflate(git_zstream * strm , i n t flush , c h a r * str1 ,
i n t functionId) {
i n t status;

f o r (;;) {
zlib_pre_call(strm);
/* Never say Z_FINISH unless we are feeding everything */
s w i t c h (functionId) {
c a s e 1:

status = inflate(& strm ->z,
(strm ->z.avail_in != strm ->avail_in) ? 0 : flush);

b r e a k ;
c a s e 2:

status = deflate(& strm ->z,
(strm ->z.avail_in != strm ->avail_in) ? 0 : flush);

b r e a k ;
};

i f (status == Z_MEM_ERROR)
die(str1);

zlib_post_call(strm);

/*
* Let zlib work another round , while we can still
* make progress.

123

Automated Software Engineering

*/
i f ((strm ->avail_out && !strm ->z.avail_out) &&

(status == Z_OK || status == Z_BUF_ERROR))
c o n t i n u e ;

b r e a k ;
}

s w i t c h (status) {
/* Z_BUF_ERROR: normal , needs more space in the output

buffer */
c a s e Z_BUF_ERROR:
c a s e Z_OK:
c a s e Z_STREAM_END:

r e t u r n status;
d e f a u l t :

b r e a k ;
}
s w i t c h (functionId) {
c a s e 1:

error("inflate: %s (%s)", zerr_to_string(status),
strm ->z.msg ? strm ->z.msg : "no message");

b r e a k ;
c a s e 2:

error("deflate: %s (%s)", zerr_to_string(status),
strm ->z.msg ? strm ->z.msg : "no message");

b r e a k ;
};

r e t u r n status;
}

i n t git_inflate(git_zstream * strm , i n t flush) {
r e t u r n git_inflate_deflate(strm , flush , "inflate: out of

 memory", 1);
}
i n t git_deflate(git_zstream * strm , i n t flush) {

r e t u r n git_inflate_deflate(strm , flush , "deflate: out of
 memory", 2);
}

Insights As we have previously noted, the tool is unable to detect differences within

strings. While we would ideally have passed only the strings “inflate” and “deflated”,
our tool considered the whole strings as a difference. Our tool also considers strings that

contain format directives such as %s to be differences that do not contain a resolution

pattern and moves up one level to resolve the differences, as described in Sect. 4.5, so

our tool had to fall back to performing a statement-level merge

Overall, we found that our tool can be integrated with a mainstream clone detector

as a clone removal mechanism. We encountered three situations that required manual

intervention:

1. merging return types int and void in C

2. merging a clone pair spread across two files

3. renaming variables

While manual intervention was necessary, our approach was effective in automating

all other tasks involved in removing the clones detected in a non-trivial repository.

123

Automated Software Engineering

9 Related work

Since our work relates to many areas of refactoring and software clones, we have split

our related work into sub-sections.

9.1 Clone detection

Our work is inspired by existing work on clone detection: Laguë et al. (1997) find

that between 6.4 and 7.5% of the source code in different versions of a large, mature

code base are clones. They only count clones that are exact copies (Type-1 clones, in

the terminology of Koschke et al. (2006)), or copies modulo alpha-renaming (Type-2

clones). Baxter et al. (1998) report even higher numbers, sometimes exceeding 25%,

on different code bases and with a different technique for clone detection that also

counts near-miss clones (Type-3 clones). The prevalence of such near-miss clones is a

strong indicator that copy–paste–modify is a widespread development methodology.

Other related work on clone detection detects clones and near-miss clones to identify

faults (Juergens et al. 2009) and to enable refactoring (Choi et al. 2011). Similar to

CCFinder/Gemini (Choi et al. 2011), our tool specifically looks for near-miss clones to

merge; however, our focus is not on detecting near-miss clones in unknown code, but

rather on merging detected clones. As our evaluation shows, our approach is effective

on general clones.

9.2 Refactoring

The other closely related work is refactoring, which Martin Fowler (Fowler et al. 1999)

defines as “the process of changing a software system in such a way that it does not

alter the external behavior of the code yet improves its internal structure”. Our work

can be considered as a complex form of refactoring, as we transform one version of

the code with clones, into another version without the clones, without changing the

program’s behavior. As in prior work, we break our transformations into individual,

atomic components (Reichenbach et al. 2009; Schäfer et al. 2009), namely merges

(which may be nested and require individual interaction) and fix-ups for existing code

to use the re-factored code.

9.3 Clonemanagement

Other work on clone management include tracking tools such as CloneBoard (de Wit

et al. 2009) and Clone tracker (Duala-Ekoko and Robillard 2008). While CloneBoard

provides the ability to organize clones and to some extent the ability to suggest the types

of clones and possible resolution mechanisms, it lacks the ability to actually perform

the resolution. Another approach to handling clones is linked editing (Toomim et al.

2004), which maintains the clones as they are, but allows editing of multiple clones

simultaneously. This has the advantage of preserving code ‘as is’, but the disadvantage

of requiring continued tool use for future evolution. Linked editing shares our view

123

Automated Software Engineering

that copy–paste–modify is an effective way to evolve software, but disagrees on how

clones should be managed; it is an open question which approach is more effective

for long-term software maintenance.

Krishnan and Tsantalis (Krishnan and Tsantalis 2014) have previously proposed

an alternate approach to merging software clones. Their approach considers clones at

all granularities, while our approach only targets method-level clones. Their strategies

for the abstraction of conflicting expressions and statements are furthermore quite

different than ours. For conflicting expressions, their approach is more aggressive

than ours. Indeed, they abstract over various kinds of complex expressions, including

function calls, allowing the clone merge to proceed only when a dependency analysis

shows that moving the expression from its original position to the call site does not

change the semantics. Our approach, on the other hand, only abstracts over various

kinds of constants, for which the abstraction process is always correct. Finally, their

approach to address Type-3 clones, in which whole statements may conflict within

a clone, is to only allow the clone merge when these conflicting statements have no

control or data dependencies on either the cloned code before the statement or the

cloned code after the statement, and thus can be moved up or down out of the cloned

region, respectively. In contrast, our approach leaves differing statements in place, to

be selected by a flag value. Our approach in this case is much more flexible, freely

allowing control and data dependencies between the conflicting statements and the

cloned code. As the approach of Tsantalis et al. comes with many constraints, the

major part of their evaluation assesses the refactorability of the clones identified by

various clone detection tools on 9 Java projects. The rates range from 6.2% out of

741,610 clone pairs for NiCad to 33% out of 103,204 clone pairs for CloneDR. No

evidence is provided that the resulting merged clones are acceptable to developers of

the affected software projects.

Another closely related clone management approach is Cedar (Tairas and Gray

2012), which targets Java and relies on Eclipse refactorings for abstraction. Unlike

our approach, Cedar is limited to Type-2 clones. As Roy et al. (2013) note, Type-3

clones are particularly common and frequently evolve out of Type-1 and 2 clones.

Another work that does clone refactoring was proposed by Zibran et al. (Zibran

and Roy 2013). Although they propose clone refactoring like ours, their approach

does not present an algorithm for merging generic near-clones but instead proposes

approaches that are combinations of existing software refactorings. Their approach is

aimed at generating an optimal schedule that will serve as a refactoring strategy for

developers to remove clones and does not automatically remove clones by itself. A

future direction could be to provide the steps inferred by our algorithm as an input to

this scheduler and observe the results to prioritize what clones to merge.

Mandal et al. (2014) propose a tool that mines code-repositories for similarity

preserving change patterns (SPCP), which are evolving code clones that are good

candidates to be refactored. They perform a manual study to show that a significant

portion of code available can be categorized as SPCPs as defined by their work. They

then evaluate their MARC tool (Mining association rules among clones) by detecting

SPCP clones in code-bases and making manual observations on the results. This system

could provide input to our system, as we could detect the SPCPs using their approach

and then merge them using ours.

123

Automated Software Engineering

In their work on unification and refactoring of clones, Krishnan and Tsantalis (2014)

discuss a method of merging two ASTs. The approach basically matches the subtrees

and detects all the subtrees that are exact matches of each other. Several preconditions

are defined to determine whether the unmatched subtrees can be parametrized over

the differences.

Another clone detection approach was proposed by Goto et al. (2013). Their

approach simply detects candidates for the extract method refactoring. In the future,

we could extend their approach to see if they can detect candidates for our resolution

patterns too.

In their work on clone management for evolving software, Nguyen et al. (2012)

identify types of changes to clones that may cause some inconsistencies. They do this

by analyzing the code from SVN repositories and the updates that happen to these

repositories. Unlike our approach, their approach works only on clone pairs.

9.4 Other related work

Our work ignores the C preprocessor (Medeiros et al. 2015) by operating only on

preprocessed code. There is prior work on supporting the C preprocessor (Gazzillo

and Grimm 2012). This work could be adapted to C++ to enable our system to support

preprocessor-based abstraction patterns.

Our notion of ‘tree dissimilarity’ is only one possible metric for clone similarity.

Smith and Horwitz (2009) propose more sophisticated approaches for similarity mea-

surement that may be more suitable for clone-merging recommender systems than

ours. By comparison, our choice penalises near-clones with substantial size differ-

ences.

10 Conclusions

Managing code clones is a significant problem, given the amount of copied and pasted

production-level code. This suggests that developers find reuse through code clones

useful in practice, even when they know that reuse through manual abstraction would

yield superior and more maintainable code; we find this confirmed both by prior work

and by an informal poll that we conducted among C++ developers. We propose to

close the gap between reuse through copy–paste based clones and abstraction through

semi-automatic refactoring.

We have implemented a prototype of a suitable refactoring tool that identifies the

parts of clones that can be merged, and proposes to the user suitable resolution patterns.

The user then chooses one of the possible resolution patterns to decide how to merge the

near-clones. We have evaluated this approach by implementing a prototype merging

tool and applying a select set of resolution patterns to near-miss clones in popular

GitHub repositories. We submitted the merged code back to the developers via pull

requests and observed that the original developers found more than 50% (90% with

123

Automated Software Engineering

Table 6 Student experience levels (self reported)

Student #1 #2 #3 #4 #5

Experience 10 years 3 months 4 years 1 years 2 months

2 4 60
1
2
3
4
5

20 40 600
1
2
3
4
5

10 20 300
1
2
3
4
5

5 10 150
1
2
3
4
5

10 200
1
2
3
4
5

Fig. 5 Amount of time used for extending functionality. x-axis = time taken, y-axis = user, red triangle =
copy–paste, blue triangle = abstraction (Color figure online)

Task 1 Task 2 Task 3 Task 4 Task 5

0

2

4

#
re

sp
on

se
s

favor abstraction favor copy-paste undecided

Fig. 6 Preferred results after extending functionality. Out of the 20 answers we received, 3 were undecided,

5 preferred copy–pasted code, and 12 preferred abstracted code

the most recent version of our tool) of our changes to be desirable, merging them into

their code bases.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

A Coding tasks and programmer poll

This appendix summarizes our informal poll. We asked five students (Table 6) to

perform reuse tasks with copy–paste–modify and with manual abstraction; Fig. 5

summarizes the amount of time taken to complete the tasks. Each graph represents

one task. For each task, the x-axis shows the time taken (in minutes) and the y-axis

indicates the user. The red triangles represent the time taken for copy–paste tasks

and the blue rectangle represent the time taken for abstraction tasks. Whenever one

student performed both copy–paste–modify and manual abstraction, the student first

completed the copy–paste–modify tasks. We later polled the students as to whether they

123

Automated Software Engineering

would prefer for the outcome to have been copy–paste–modified code or abstracted

code. Four students responded; we summarize their responses for each task in Fig. 6.

References

Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using abstract syntax trees.

In: Proceedings of the International Conference on Software Maintenance, ICSM ’98, pp. 368–378.

IEEE Computer Society, Washington (1998)

Choi, E., Yoshida, N., Ishio, T., Inoue, K., Sano, T.: Extracting code clones for refactoring using combinations

of clone metrics. In: Proceedings of the 5th International Workshop on Software Clones, IWSC ’11,

pp. 7–13. ACM, New York (2011)

Cordy, J.R., Roy, C.K.: The NiCad clone detector. In: 2011 IEEE 19th International Conference on Program

Comprehension (ICPC), pp. 219–220 (2011)

de Wit, M., Zaidman, A., van Deursen, A.: Managing code clones using dynamic change tracking and

resolution. In: IEEE International Conference on Software Maintenance, 2009, ICSM 2009, pp. 169–

178 (2009)

Duala-Ekoko, E., Robillard, M.P.: CloneTracker: tool support for code clone management. In: ICSE, pp.

843–846 (2008)

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design of Existing

Code. Addison-Wesley, Reading (1999)

Fraser, G., Zeller, A.: Mutation-driven generation of unit tests and oracles. In: Proceedings of the Nineteenth

International Symposium on Software Testing and Analysis, ISSTA 2010, Trento, Italy, pp. 147–158,

12–16 July 2010

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley Longman, Boston (1995)

Gazzillo, P., Grimm, R.: SuperC: parsing all of C by taming the preprocessor. In: Proceedings of the 33rd

ACM SIGPLAN Conference on Programming Language Design and Implementation, Beijing, China,

pp. 323–334 (2012)

Goto, A., Yoshida, N., Ioka, M., Choi, E., Inoue, K.: How to extract differences from similar programs?

A cohesion metric approach. In: 2013 7th International Workshop on Software Clones (IWSC), pp.

23–29 (2013)

Hunt, A., Thomas, D.: The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley Longman,

Boston (1999)

Juergens, E., Deissenboeck, F., Hummel, B., Wagner, S.: Do code clones matter? In: IEEE 31st International

Conference on Software Engineering, 2009. ICSE 2009, pp. 485–495 (2009)

Kapser, C.J., Godfrey, M.W.: cloning considered harmful considered harmful: patterns of cloning in soft-

ware. Empir. Softw. Eng. 13(6), 645–692 (2008)

Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix trees. In: Proceedings of

the 13th Working Conference on Reverse Engineering, WCRE ’06, pp. 253–262. IEEE Computer

Society, Washington (2006)

Krishnan, G.P., Tsantalis, N.: Unification and refactoring of clones. In: 2014 Software Evolution Week—

IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-

WCRE), pp. 104–113 (2014)

Laguë, B., Proulx, D., Merlo, E.M., Mayrand, J., Hudepohl, J.: Assessing the benefits of incorporating

function clone detection in a development process. In: Proceedings of International Conference on

Software Maintenance (ICSM), pp. 314–321. IEEE Computer Society Press (1997)

Mandal, M., Roy, C.K., Schneider, K.A.: Automatic ranking of clones for refactoring through mining

association rules. In: 2014 Software Evolution Week—IEEE Conference on Software Maintenance,

Reengineering, and Reverse Engineering (CSMR-WCRE), pp. 114–123 (2014)

Medeiros, F., Kästner, C., Ribeiro, M., Nadi, S., Gheyi, R.: The love/hate relationship with the C pre-

processor: an interview study. In: Boyland JT (ed.) 29th European Conference on Object-Oriented

Programming (ECOOP 2015), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-

many, Leibniz International Proceedings in Informatics (LIPIcs), vol. 37. pp. 495–518 (2015)

Narasimhan, K., Reichenbach, C.: Copy and paste redeemed (t). In: Proceedings of the 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE), ASE ’15, pp. 630–640 (2015)

123

Automated Software Engineering

Negara, S., Vakilian, M., Chen, N., Johnson, R.E., Dig, D.: Is it dangerous to use version control histories

to study source code evolution? In: Proceedings of the 26th European Conference on Object-Oriented

Programming, ECOOP’12, pp. 79–103. Springer, Berlin (2012)

Nguyen, H.A., Nguyen, T.T., Pham, N.H., Al-Kofahi, J., Nguyen, T.N.: Clone management for evolving

software. IEEE Trans. Softw. Eng. 38(5), 1008–1026 (2012)

Pawlik, M., Augsten, N.: RTED: A robust algorithm for the tree edit distance. In: Proceedings of the VLDB

Endowment, vol. 5, no. 4 (2011)

Raychev, V., Vechev, M., Krause, A.: Predicting program properties from “big code”. In: Proceedings of

the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pp. 111–124 (2015)

Reichenbach, C., Coughlin, D., Diwan, A.: Program metamorphosis. In: European Conference on Object-

Oriented Programming (ECOOP). Springer, Berlin, pp. 394–418 (2009)

Roy, C., Schneider, K., Perry, D.: Understanding the evolution of type-3 clones: an exploratory study. In:

MSR (2013)

Saha, R.K., Roy, C.K., Schneider, K.A., Perry, D.E.: Understanding the evolution of type-3 clones: an

exploratory study. In: 2013 10th Working Conference on Mining Software Repositories (MSR), pp.

139–148 (2013)

Schäfer, M., Verbaere, M., Ekman, T., de Moor, O.: Stepping stones over the refactoring rubicon. In: ECOOP,

pp. 369–393 (2009)

Smith, R., Horwitz, S.: Detecting and measuring similarity in code clones. In: Proceedings of the Interna-

tional workshop on Software Clones (IWSC) (2009)

Tairas, R., Gray, J.: Increasing clone maintenance support by unifying clone detection and refactoring

activities. Inf. Softw. Technol. 54(12), 1297–1307 (2012)

Toomim, M., Begel, A., Graham, S.L.: Managing duplicated code with linked editing. In: VLHCC (2004)

Zibran, M.F., Roy, C.K.: Conflict-aware optimal scheduling of prioritised code clone refactoring. IET Softw.

7(3), 167–186 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

