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Static checker frameworks support software developers by automatically discovering bugs that fit general-
purpose bug patterns. These frameworks shipwith hundreds of detectors for such patterns and allow developers
to add custom detectors for their own projects. However, existing frameworks generally encode detectors
in imperative specifications, with extensive details of not only what to detect but also how. These details
complicate detector maintenance and evolution, and also interfere with the framework’s ability to change
how detection is done, for instance, to make the detectors incremental.

In this paper, we present JavaDL, a Datalog-based declarative specification language for bug pattern
detection in Java code. JavaDL seamlessly supports both exhaustive and incremental evaluation from the
same detector specification. This specification allows developers to describe local detector components via
syntactic pattern matching, and nonlocal (e.g., interprocedural) reasoning via Datalog-style logical rules. We
compare our approach against the well-established SpotBugs and Error Prone tools by re-implementing
several of their detectors in JavaDL. We find that our implementations are substantially smaller and similarly
effective at detecting bugs on the Defects4J benchmark suite, and run with competitive runtime performance.
In our experiments, neither incremental nor exhaustive analysis can consistently outperform the other, which
highlights the value of our ability to transparently switch execution modes. We argue that our approach
showcases the potential of clear-box static checker frameworks that constrain the bug detector specification
language to enable the framework to adapt and enhance the detectors.
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1 INTRODUCTION

Static bug checkers have become an essential tool for many developers. For example, Vassallo et al.
[2020] show that many Open Source developers run tools like FindBugs [Ayewah et al. 2008] (now
SpotBugs), Checkstyle [Burn et al. 2021], PMD [Copeland 2005], SonarQube [Brandhof et al. 2014],
and Error Prone [Aftandilian et al. 2012] on a daily basis for quality assurance. Moreover, they
found that 66% of the Open Source projects that they surveyed mandate that contributors must
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use static checkers in some form. Checker frameworks typically offer a selection of bug pattern
detectors, and then provide extension mechanisms through which developers can add more checks.
Examples of such specialized checks include project-specific language idioms and coding standards
as well as bug patterns connected to a specific API. Developers who build custom detectors mostly
write plugins in an imperative general-purpose language to examine some program representation
that is specific to the checker framework, e.g., an abstract syntax tree or a byte code representation.
However, given the properties of imperative specifications, these checker implementations are

black-box detectors in that the checker framework knows little about the internal wiring of these
detectors beyond how to run them. Thus, the framework cannot examine the internals of each
detector to e.g. analyze the version of the input language that the checker can handle or the types
of bugs that might report. It must instead rely on static and manually curated meta-information or
on dynamic (and incomplete) sampling. We argue that black-box bug checker architectures limit
innovation at the architectural level, and propose clear-box bug checker frameworks as an alternative.
Clear-box architectures enable the checker framework to automatically enhance detectors, e.g. by
deriving confidence scores [Raghothaman et al. 2018] to rank bug reports, tracing the detector’s
chain of reasoning to produce explanations [Zhao et al. 2020], or incrementalizing computations to
speed up execution [Szabó et al. 2018]. By contrast, a black-box checker framework must ask each
detector developer to manually integrate such features, requiring O(n) effort over the number of
detectors as opposed to O(1) for clear-box frameworks. Notably, no established black-box checker
framework (to the best of our knowledge) supports any combination of the above features.
In this paper, we explore the value of clear-box bug detection in JavaDL, a novel bug checker

framework for Java that can process a wide range of user-specified bug detectors and execute them
both incrementally and exhaustively. Incremental evaluation can often outperform exhaustive
evaluation by re-using intermediate results, but for larger changes, the cost of retaining intermediate
results may be greater than the benefits from re-use. JavaDL follows Raghothaman et al. [2018] and
Szabó et al. [2018] in building onDatalog [Ceri et al. 1989], a declarative logic programming language
that has become a popular choice for implementing analyses over powerset lattices, including
complex points-to analyses [Balatsouras and Smaragdakis 2016]. Datalog-based analyses have two
parts: (1) fact extraction, which today is generally a black-box analysis that maps the input program
to a set of input facts (e.g., Def-Use edges [Heo et al. 2019]), and (2) fixpoint computation, which
runs the actual Datalog program on the input facts. JavaDLminimizes its dependency on black-box
fact extractors by providing syntactic pattern matching on the input abstract syntax tree (AST)
for the full Java 8 syntax. This pattern matching support eliminates much of the interoperability
concern that Madsen et al. [2016] observed for Datalog in program analysis, i.e., the need for
“tedious mappingž and manual (de)serialization code in fact extraction.

For convenience, JavaDL additionally provides detectors with a small but extensible set of facts
(name and type analysis information) from the ExtendJ Java compiler [Ekman and Hedin 2007].

We take JavaDL as one point in the design space for clear-box static checkers and explore how
it compares to contemporary static checker tools with regard to expressiveness and performance.
Our experiments show that JavaDL offers performance comparable to that of existing checkers
and enables the concise implementation of different types of bug detectors, in the common, broad
sense of the term [Reichenbach 2021], i.e. including both syntactic “bad smellž detectors and
semantic, inter-procedural detectors that reason across compilation units. Our results also show
that JavaDL can effectively incrementalize these checkers, but that incremental analysis may not
always outperform exhaustive analysis. Our contributions in this paper are the following:

• the first (to the best of our knowledge) static checker framework with support for syntactic
pattern matching over the full Java grammar (up to Java 8),
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1 EDB('AnalyzedFiles, "AnalyzedFiles.csv", "csv").

2 java ('AnalyzedFiles) {

3 Warning(ls, cs, le, ce, f) :- CovariantEqals(c), NOT(ObjectEqals(c)), SRC(c, ls, cs, le, ce, f).

4 CovariantEqals(c) :- c ⟨.. class #_ { .. public boolean equals(#t #_) { .. } .. } ..⟩, DECL(#t, c).

5 ObjectEqals(c) :- c ⟨.. class #_ { .. public boolean equals(Object #_) { .. } .. } ..⟩.

6 }

7 OUTPUT('Warning, "Warnings.csv", "csv").

Fig. 1. Covariant equals check implemented in JavaDL

• a Datalog language extension for syntactic pattern matching that extends over our earlier
work [Dura et al. 2019] by handling both syntactic ambiguity and semantic information,

• an incremental evaluator for inter-procedural Datalog-based program analysis,
• a prototype implementation of our approach, the JavaDL system,1

• a comparison of performance and quality between JavaDL, SpotBugs, and Error Prone, with
a validated [Dura et al. 2021a] and an improved artifact [Dura et al. 2021b] for reproducibility.

2 THE JAVADL LANGUAGE

As an introduction, consider the Covariant equals() bug pattern, shared by the FindBugs and Error
Prone checkers. In Java, all objects inherit the method equals(Object) for equality checking. If
classC , Objectwants to provide custom equality tests, it must override Object.equals(Object)
with its own C.equals(Object) method. Note that Java requires that C.equals must accept any
Object parameter. However, programmers may miss this requirement and instead define a method
that only accepts a subtype of Object, e.g.C.equals(C). Since Java also supports overloading, this
method may work as expected in some contexts but cause subtle bugs elsewhere.
Figure 1 shows a complete JavaDL specification that includes a detector for this pattern. For

now, we skip over the input and output handling and focus on the detector itself, in lines 3ś5.
Here, line 3 declares that the checker records aWarning at source location ⟨ls, cs, le, ce, f⟩ (in

order: start line & column, end line & column, source file) whenever class c defines an equals(c)

method (CovariantEqals, line 4) but no equals(Object) method (ObjectEqals, line 5).
The code in this line is a standard Datalog Horn clause, P0(x0) :-P1(x1), . . . , Pn(xn)., where Pi are

predicate symbols and xi are sequences of variables and constants. The semantics of these clauses
are that for any assignment ρ that maps all variables in x0, . . . , xn to constants, whenever for all
i ∈ 1..n the relations Pi contain the tuple ρ (xi ), the tuple ρ (x0) must also be in the relation P0. We
call P0(x0) the head literal and the other Pi(xi ) the body literals and follow most Datalog dialects in
allowing body literals to be negated (with the obvious semantics). When n , 0, the clause is also
called a rule, and if n = 0, it is called a fact and usually omits the left arrow ‘:-’.

Line 4 shows how JavaDL extends clauses with pattern matching to define CovariantEqals:
c ⟨.. class #_ { .. public boolean equals(#t #_) { .. } .. } ..⟩

This pattern captures all class declarations c that declare an equalsmethod with a single parameter.
The pattern matching braces ⟨..· · ·..⟩ contain Java source code, extended with syntactic metavariables

such as #t, which here binds to the type name of the formal parameter to equals, and wildcards

(#_) that we here use to ignore the name of that same parameter. The gaps (..) in the pattern ignore
sequences of program elements: here, they allow any number of declarations to precede or follow
the declaration of equals, and any sequence of statements inside the equals method body.
This pattern binds #t and c to AST nodes in the Java input program. To check if c defines

a method equals(c #_), we must also ensure that c and #t describe the same type. JavaDL
represents each type by the type’s declaration AST node, so c already is a type, but #t is only a

1https://github.com/lu-cs-sde/metadl
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1 switch(getInt())) {

2 case 0: return "zero";

3 case 1: return "one";

4 case 2: return "two";

5 } (a)

1 enum State { OK, FAIL }

2 switch(state) {

3 case FAIL: return false;

4 case OK: return true;

5 } (b)

1 enum State { OK, FAIL, HALT }

2 switch(state) {

3 case FAIL: return false;

4 case OK: return true;

5 } (c)

Fig. 2. Examples for the Missing switch Default bug pattern. Code box (a) lacks a default case. Box (b) does
not, since it covers all possible enum cases explicitly. Box (c) uses the same switch block as box (b) but extends
the enum with (HALT), meaning that the switch again lacks one case.

name and could resolve to different types in different contexts. We resolve its type with the semantic

predicate DECL and ensure that that type is c by requiring that DECL(#t, c) must hold.
ObjectEqals in line 5 analogously captures all classes c that override Object.equals(Object).
We have now seen the essence of how JavaDL combines Datalog, syntactic patterns, and semantic

predicates like DECL and SRC to analyze source code. JavaDL provides some additional features
for handling input and output, which we demonstrate in the remaining parts of Figure 1.

Returning to the top of our example, line 1 specifies that the relation AnalyzedFiles contains all
tuples from an external data source (a .csv file). Line 2 then starts a java block overAnalyzedFiles.
This block sets the scope for pattern matching and semantic predicates in lines 3ś5: our bug detector
will analyze all the source files listed in the file AnalyzedFiles.csv. Finally, line 7 declares that
all tuples in the relationWarning must be written to the file Warnings.csv.

2.1 Non-Local and Semantic Analyses

From the perspective of a typical imperative checker framework, the properties we describe in
Figure 1 amount to boolean checks on Java classes. To see how JavaDL expresses more complex
semantic properties, consider the Missing switch Default bug pattern. Figure 2a shows a switch
statement over int values that only captures three cases; this codemay indicate that the programmer
forgot to handle other possible cases. Both Error Prone and SpotBugs flag such code, and JavaDL

can capture this case with syntactic pattern matching and a small amount of logical reasoning.
However, relying purely on syntactic reasoning leads to a false positive for Figure 2b. This

switch over an enumeration is exhaustive and therefore requires no default. SpotBugs and Error
Prone will not flag the switch in Figure 2b, but will flag the nonexhaustive switch in Figure 2c.

To distinguish these three cases, we need to know that variable state is an enum value and what
values it can take. That means that we need state’s static type, and find that type’s possible enum
values (e.g., FAIL and OK), which can be non-local information if enum State resides in a different
compilation unit. (More precise analyses are also conceivable, cf. Section 5.2.1.)
Figure 3 shows how we can specify this bug pattern in JavaDL. Predicate Switch (line 1)

matches all switch statements, while SwitchHasDefault(s) (line 2) matches only those who
contain default clauses. Next, CaseOnEnum(s,τ ,m) (line 3) captures all case branches for enum
member m, plus the surrounding switch statement s and enum type τ . Here, DECL(#c,m) maps
enum values from Figure 2 to their declarations, while TYPE(#v,τ ) relates the expression #v that
we are discriminating over to its type τ , which is an enum type iff τ ⟨..enum #_ { .. }..⟩ holds.

CaseOnEnum(s,τ ,m) thus uses both semantic and non-local information: DECL and TYPE

provide the results of ExtendJ’s name and type analysis, respectively. TYPE(e,τ ) relates expressions
e and their Java types τ , and we follow ExtendJ in identifying τ with class, interface, or enum
definitions for all types for which we can find one in a source or .class/.jar file. In the latter case,
we use ExtendJ’s partial decompilation facilities to map the high-level bytecode class structure
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1 Switch(s) :- s ⟨..switch (#_) { .. }..⟩.

2 SwitchHasDefault(s) :- s ⟨..switch (#_) { .. default: .. }..⟩.

3 CaseOnEnum(s, τ , m) :- s ⟨..switch (#v) { .. case #c: .. }..⟩, DECL(#c, m) TYPE(#v, τ ), τ ⟨..enum #_ { .. }..⟩.

4 EnumMember(τ , #m) :-

5 τ ⟨..enum #_ { .., #m , .. ; .. }..⟩, ID(#m, _). // Filter out declarations #m that are not enum values

6 SwitchWithoutEnumMember(s, τ ) :-

7 CaseOnEnum(s, τ , _), EnumMember(τ , m), NOT(CaseOnEnum(s, τ , m)).

8 SwitchOnAllEnumMembers(s) :-

9 CaseOnEnum(s, τ , _), NOT(SwitchWithoutEnumMember(s, τ )).

10 SwitchWithoutDefault(s) :-

11 Switch(s), NOT(SwitchHasDefault(s)), NOT(SwitchOnAllEnumMembers(s)).

Fig. 3. JavaDL specification for the SwitchNoDefault bug pattern, excluding input and output handling.

(excluding method bodies) into an AST representation. For example, when applied to Figure 2b,
CaseOnEnum would contain ⟨s, State, OK⟩ and ⟨s, State, FAIL⟩, where s is the switch block in
line 2, and State, OK, and FAIL are the declaration sites of enum type State and its values OK and
FAIL, respectively. These semantics are independent of whether State is defined in the same source
file as the switch statement, in a different source file, or in Java bytecode.
Continuing our example, predicate EnumMember(τ , #m) in lines 4ś5 relates enum types τ and

their member values #m, while SwitchWithoutEnumMember(s,τ ) checks whether switch s over
enum type τ is missing at least one enum value (m, in line 7), SwitchOnAllEnumMembers(s)

checks that SwitchWithoutEnumMember does not hold for s , and SwitchWithoutDefault(s)

finally collects all switch statements that neither have a default nor cover all enum members.
Non-local bug patterns like SwitchWithoutDefault are the interesting cases for incremental

analysis: if the code changes in either the switch statement or in the enum type, we must re-evaluate
all potentially affected reports, ideally without re-evaluating the unaffected ones (Section 4).

2.2 Language Definition

Figure 4 summarizes the JavaDL syntax. Our language is based on Datalog with negation, where
literals in rule bodies may be negated NOT(P(. . .)), following the standard (“stratificationž) re-
quirement that they must not transitively depend on their own negations (e.g., P(x) :- NOT(P(x)).).

Program ::= Di

Declaration D ::=C | java(r){Ci}

Clause C ::= Hi:-Bj .

Head literal H ::= P(ti)
Body literal B ::= H | NOT(H ) | ⟨..J ..⟩ | v ⟨..J ..⟩

Term t ::=v | _ | k | r | e

Predicate reference r ::= ’P

Expression e ::=v | to_number(e) | e+e | e*e | ...

Variable v ::=vb | vm
Predicate symbol P ∈ PredSym

Constant k ∈ Z ∪ String

Pattern language J ∈ JavaPatternLanguage

Basic variable vb ∈ Var

Pattern metavar. vm ∈ #vb

Fig. 4. Syntax for the JavaDL language.

JavaDL extends Datalog with java blocks,
syntactic patterns, and predicate references
to support syntactic pattern matching.
Syntactic patterns allow us to match

terms in a given input program. JavaDL sur-
rounds syntactic patterns J by quotes ⟨..J ..⟩
that we write <: J :> in the source code.
Here, J is any Java code fragment that can
be rooted at a single AST node; these can
be statements, classes, types, import state-
ments or any other syntactic production
from the Java grammar. For instance, the
pattern ⟨..#e.toString()..⟩ will match any
calls to the method toString() in the input
program and bind the expression on which
the call is made to the pattern metavariable
#e. Pattern metavariables like #e describe AST nodes, and we can use them outside of syntactic
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patterns as normal Datalog variables. In some cases we are interested in reasoning about the root of
a syntactic pattern explicitly. JavaDL’s rooted matching syntax expresses e.g. the set of occurrences
of the literal 0 in the input program as z⟨..0..⟩; as usual in logic programming, we can use this pattern
both to test whether z is an AST node for a 0 and to find all z with that property. Using pattern
metavariables for rooted matching allows us to recurse, e.g. to conservatively underapproximate
the set of all expressions that evaluate to 0:

Zero(#z) :- #z⟨..0..⟩.

Zero(#z) :- #z⟨..0 + #z2..⟩, Zero(#z2). // And so on.

We can thus derive complex semantic properties directly from syntactic patterns.
When matching patterns, we often want to leave parts inside the pattern unspecified; we can do

so by using gaps (..). For example, in Figure 1 we used gaps to ignore declarations inside class
bodies, since these were irrelevant to our analysis. We also allow gaps within sequences of elements.
For instance, the pattern ⟨..new #T[] { #first , .. }..⟩, will match array initializers with at
least one (but possibly more) elements, and bind the first element to #first.
Meanwhile, predicate references quote a predicate, e.g. ’Srcs, and turns it into a logical object,

akin to a pointer to a C variable or a java.lang.Class object. We use this mechanism to describe
properties about predicates, and especially to expand predicates that describe a set of source files
into ASTs through a java block:

java(’Srcs) { . . . body . . . }

All syntactic patterns in the body of this block will reason about precisely the ASTs of the programs
whose sources are in Srcs. This design gives us a scope for syntactic patterns without having
to make AST roots explicit everywhere; we can think of java blocks as “broadcastingž implicit
parameters to all rules in the body. This design follows our earlier MetaDL analyze blocks [Dura
et al. 2019], adding rooted patterns and support for syntactic ambiguity (Section 3.3.3). While java
blocks are not essential to our approach and could be implicit, we include them to enable future
use cases e.g. for pre-analyses that grow the list of source files to handle dynamic class loading.

2.3 Pseudopredicates

JavaDL incorporates a number of language constructs with the syntactic form of predicates but
special semantics. We categorize these pseudopredicates into three groups: I/O pseudopredicates

for accessing external data, infinite pseudopredicates for arithmetic and comparison, and semantic

predicates that expose precomputed semantic information. We have already introduced our two I/O
pseudopredicates, which may only occur as facts (i.e., not in rules):

• EDB(′P, "TabulatedP.csv", "csv") imports an external database (SQLite3 or CSV) into a
relation (here: P). Like facts from java blocks, these imported relations provide ground facts,
rather than derived facts; the ‘E’ in EDB (‘extensional’) alludes to this property.

• OUTPUT(′R, "TabulatedR.db", "sqlite") exports the contents of the R predicate to the
database file "TabuletedR.db".

Our infinite pseudopredicates are the only predicates that allow (nested) arithmetic expressions
inside their literals. We only allow these pseudopredicates in rule bodies:

• EQ(e0, e1) holds iff the value of eo is equal to the value of e1.
• LT(e0, e1) holds iff the value of e0 is less than the value of e1.
• BIND(v, e) holds iff the variable v equals the value of expression e . Unlike EQ, BIND can also
bind variables.

Finally, semantic predicates provide additional information about programs under analysis. They
are only available inside java blocks:
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JavaDL

check
Datalog parsing

Pattern parsing

Pattern → Datalog

Soufflé

JavaDL

check
lib.so

Datalog Synthesis

Source.java

JavaDL

check

Source
predicate

evaluation

Source
files

Datalog

projection

EDB

Program
repr.

JavaDL

check
lib.so

OUTPUT

ExtendJ

AST

JavaDL Exhaustive Evaluation

Fig. 5. Compilation of a JavaDL checker specification to a Datalog library (left) and exhaustive evaluation of
a compiled JavaDL checker on a Java program (right).

• ID(n,m) relates the node n to its namem, if the node represents a named AST fragment (e.g.,
a variable, class or method).

• SRC(n, ls , cs , le , ce , f ) relates the AST node n to its source code location, where the pairs
⟨ls , cs ⟩ and ⟨le , ce ⟩ represent its start and end positions in the source file f .

• PARENT(n, c) relates the AST node c to its parent n.
• INT(n, s) relates the integer literal n to its value s , represented as a string. We provide similar
predicates for the numeric literals (FLOAT, LONG, etc.).

• STR(n, s) relates the string literal n to its string value s .
• MOD(n,m) relates a declaration n to its modifiers (public, static etc.).
• DECL(n,nd ) relates the name n to its declaration nd .
• TYPE(n,nt ) relates an AST node that represents a name or expression n to the AST node nt
that represents the node’s type. Due to limitations in our frontend, there are corner cases in
Java 8 where this relation may be inaccurate.

We did not find it necessary to add a feature for referencing specific Java types. As we show later
in Figure 9 for java.lang.String, the existing JavaDL features suffice for this task.

The TYPE and DECL relations allow JavaDL code to refer to code from external jar files, though
pattern matching support on such compiled code excludes statements and expressions.

Types. JavaDL is a statically typed language, without explicit type declarations. Instead, it relies
on monomorphic type inference. Currently, JavaDL supports four types for variables: Int, String,
ASTNode for AST nodes, and PredRef for predicate references.

3 IMPLEMENTATION

JavaDL can run bug checkers either exhaustively (on the entire program) or incrementally (only
on the parts of a program that have changed). We first describe our implementation for exhaustive
evaluation, and discuss the refinements for incremental evaluation in Section 4.

3.1 Architecture

Figure 5 shows an overview of our prototype implementation, with an initial synthesis step illus-
trated to the left and the steps of the exhaustive evaluation to the right.

In Datalog synthesis, our prototype compiles JavaDL into efficient native checker code with the
help of the high-performance Datalog compiler Soufflé [Scholz et al. 2016]. In this step, our compiler
first parses the Datalog fragment of the JavaDL program using an LALR parser, but leaves syntactic
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patterns (⟨... . ...⟩) unprocessed. It calls a separate parser to parse these (often highly ambiguous)
patterns (Section 3.3) and then translates them into Datalog queries (Section 3.3.2). The compiler
then emits Datalog in Soufflé’s Datalog dialect (adding explicit type annotations and input/output
specifications), and calls Soufflé to generate the native checker library. This library implements the
Datalog portion of the bug checker’s exhaustive variant and is independent of the program under
analysis, so we only need to re-synthesize it when we add, remove, or alter bug detectors.
In exhaustive evaluation, the driver first determines the set of Java files for each java block to

analyze2, then passes these files to the Java compiler ExtendJ [Ekman and Hedin 2007]. The driver
then translates relevant parts of ExtendJ’s Java AST representation into in-memory tables for our
native checker binary (“Datalog projectionž), by flattening the AST structure (Section 3.2) and
tabulating semantic information (e.g., the TYPE and DECL) predicates. Finally, the driver passes
these tables to the native library, which completes Datalog evaluation and reports all detected bugs.

3.2 Program Representation

Our syntactic pattern matcher operates entirely on logical relations. Thus, we compile syntactic
Java patterns into special pattern-matching Horn clauses (Section 3.3) during Datalog synthesis, and
translate Java source code into logical facts. Since ExtendJ’s AST faithfully preserves the concrete
syntax, we do not distinguish between ASTs and parse trees.
Our approach extends the relational representation of ASTs from our earlier work [Dura et al.

2019] to compactly represent ExtendJ’s Java AST, together with terminal symbols, source location
information, and semantic attributes (TYPE, DECL etc.). We map AST nodes to 64-bit integers, and
represent the connections between them with the following three relations:

(1) AST(k : String,n : ASTNode, i : Int, c : ASTNode, t : String) represents a node n, of syn-
tactic production k . If n has no children, we store the node information as a single fact
AST(k,n, -1, -1, t). If k represents a terminal name or literal, then t is additionally the corre-
sponding lexeme. Otherwise, if n is a nonterminal, c represents the ith child node.

(2) ATTR(n : ASTNode,a : String,m : ASTNode) holds if node n’s attribute a has valuem.
(3) SRC(n : ASTNode, ls : Int, cs : Int, le : Int, ce : Int, f : String) relates node n and its source

location, represented as starting and ending line and column information, and file name.

3.3 Syntactic Pattern Matching

Our JavaDL compiler translates syntactic patterns into logical literals. This delegates the heavy
lifting of syntactic pattern matching to the Datalog engine and allows us to freely intersperse
pattern matching and other forms of program analysis.

3.3.1 The Java Pattern Grammar. We construct our pattern grammar by transforming the ExtendJ
Java grammar. For each syntactic category, represented by a nonterminal N , we introduce two
fresh nonterminals Np , which adds metavariables (#v), and Nl , which also adds gaps (..):

Np F N | MetaVarID

Nl F Np | ".."

We then update all other rules in the BNF grammar to replace right-hand-side occurrences of N by
Np , except for sequences of N (e.g., parameter lists), which we replace by Nl . This process is fully
automatic to support future changes to ExtendJ.
Our pattern grammar accepts any Java program but introduces ambiguities. For example, the

pattern ⟨..#t #n() { .. }..⟩ can be parsed both as a constructor definition or as a method definition.
The pattern compiler statically detects such ambiguities and emits a warning, but defaults to

2 If a P in a java (’P) block is not loaded directly, we additionally use partial interpretation (not explored in this work).
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Expr add_expr ::= add_expr.e1 PLUS mul_expression.e2

{: return new AddExpr(e1, e2); :}

Expr mul_expression ::= ...

| literal

IntegerLiteral literal ::= LITERAL.l

{: return new IntegerLiteral(l); :}

(a) Pattern Rule

Expr add_expr ::= add_expr.e1 PLUS mul_expr.e2

{: return new AddExpr(e0, e2); :}

| METAVARID.id

{: return new ExprMetaVar(id); :}

| ...

Expr mul_expr ::= ...

| literal

| METAVARID.id

{: return new ExprMetaVar(id); :}

IntegerLiteral literal ::= LITERAL.l

{: return new IntegerLiteral(l); :}

| METAVARID.id

{: return new IntegerLiteralMetaVar(id); :}

(b) Extended Grammar Rule

e
AddExpr

#x
MetaVarExpr

ϕ1

IntegerLiteral

ϕ2

Terminal: 1

(c) The abstract syntax tree for the pattern e⟨..#x + 1..⟩

Automatic Pattern
Grammar Extension

Fig. 6. Pattern grammar generation and pattern parsing.

allowing any of the possible parses. The bug detector writer can then choose to disambiguate by
using other predicates in the same clause as the pattern. In the example above, the rule could e.g.
test if #t is a modifier or a type with the literalMOD(#t, _). If the bug detector writer instead
chooses to retain this ambiguity, #t will match both constructor and method definitions. These
ambiguities only affect syntactic patterns; when we later parse Java input programs, we rely on
ExtendJ and its unambiguous Java grammar.

3.3.2 Relational Representation of Patterns. We transform syntactic patterns to Datalog clauses,
following our earlier work [Dura et al. 2019] and De Roover et al. [2007], except for encoding the
semantic category of the matched node in tuples rather than in predicates.

To illustrate, let us first consider how ExtendJ would parse the expression 1 + 1. Figure 6a shows
the corresponding part of the ExtendJ Java grammar: ExtendJ will represent the syntactic category
add_expr by an AST node AddExpr with two IntegerLiteral(1) child nodes.

We parse the pattern e⟨..#x + 1..⟩ similarly, except with the grammar in Figure 6b, which adds
rules for gaps and metavariables. We represent gaps and metavariables by custom AST nodes, and
assign each node a node identifier (Figure 6c). For metavariables and the roots of rooted patterns,
we set these identifiers to be the corresponding (meta)variables. For all other nodes, we introduce a
fresh variable (e.g. ϕ1, ϕ2).

Pat(e, #x) :- AST("AddExpr", e, 0, #x, _),

AST("AddExpr", e, 1, ϕ1, _),

Supertype(κ1, "Expr"),

AST(κ1, ϕ1, 0, ϕ2, _),

AST("Terminal", ϕ2, _, "1").

Fig. 7. Expanded pattern.

For each such pattern p, we then create a
fresh Datalog predicate Patp , with its arity
equal to the number of free variables in the
pattern, including the optional root. We then
replace all occurrences of p by Patp to desugar
JavaDL to plain Datalog.

In Figure 6c, theMetaVarExpr node corre-
sponds to the syntactic category Expr in the
abstract grammar. Since we tag our AST nodes
with their syntactic production (e.g., IntegerLiteral) rather than with nonterminal syntactic cate-
gories, we encode their subtyping relationship in an internal predicate Supertype(String, String).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 165. Publication date: October 2021.



165:10 Alexandru Dura, Christoph Reichenbach, and Emma Söderberg

AddExpr

AddExpr MulExpr

IntegerLiteral

AddExpr MulExpr

IntegerLiteral

#e1 + #e2 + #e3

MetaVarID PLUS MetaVarID PLUS MetaVarID

AddExpr

AddExpr MulExpr

AddExpr MulExpr

#e1 + #e2 + #e3

MetaVarID PLUS MetaVarID PLUS MetaVarID

(a) (b)

Fig. 8. The original (a) and simplified (b) SPPFs for the expression #e1 + #e2 + #e3. denotes alternatives.

We generate this predicate statically, based on the analysis of the type hierarchy in the abstract
grammar, and use it to set a bound on the syntactic categories that a metavariable can match. This
transforms the pattern e⟨..#x + 1..⟩ into the Datalog rule in Figure 7. We use the same approach to
translate gaps and the constraints that they introduce as in MetaDL [Dura et al. 2019].

3.3.3 Parsing Ambiguous Patterns. Our automatically generated pattern grammar (Figure 6b) is
highly ambiguous, and unsuitable for most parsing algorithms. We therefore adapt Scott [2008]’s
shared packed parse forest (SPPF) variant of the Earley parser. This algorithm compresses ambiguity
effectively, but solves only part of the ambiguity in our case.
To illustrate, consider the pattern ⟨..#e1 + #e2 + #e3.

.⟩. Parsing this pattern yields the SPPF in
Figure 8a, which contains two SPPF alternative nodes. These are not parse tree nodes but instead
mark a choice in the tree: either child of an alternative node will yield a correct parse tree.

While a purely syntactic system could match over these alternatives directly, JavaDL must map
syntactic categories to AST node names (Section 3.3.2). However, ExtendJ’s parser uses a black-box
specification of the mapping between concrete and abstract syntax that only provides us with
opaque ‘parser actions’ ({: . . . :} in Figure 6) that we can call, but not inspect automatically.

To avoid having to produce all four ASTs for our example, or 2n in general, we simplify the parse
forests by shortening the path from each metavariable or gap terminal to the root. Concretely, we
find all derivation chains of the formN → M → MetaVarID and replace themwithN → MetaVarID.
We do this transformation recursively, starting from the leaves towards the root, while also merging
alternatives if they contain the same derivation chain. We perform a similar transformation for
gaps. For the example in Figure 8a, we apply the transformation twice for N = MulExpr and
M = IntegerLiteral. The intuition behind this transformation is that instead of enumerating all
the possible syntactic categories a metavariable could have, we provide an upper bound for them.

Going back to the example in Figure 8a, the metavariable #e3 could match the syntactic categories
IntegerLiteral or Expr. After the transformation (Figure 8b), #e3 matches all the nodes having
the syntactic category Expr, which is more general and includes IntegerLiteral.
In effect, the transformation merges multiple derivation chains that end up in a MetaVarID (or

a gap) and yields an SPPF with significantly fewer edges. In practice, this enables us to quickly
enumerate the parse trees. For the addition pattern discussed above, this approach produces a
single parse tree (Figure 8b).

3.4 Semantic Attribute Extraction

ExtendJ is a full-fledged Java compiler, and therefore performs a variety of program analyses. Some
of these are useful for writing bug detectors, so we export them for easy access in JavaDL code.
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1 NewString(τ, f, l, c) :- n⟨..new String(#v)..⟩, TYPE(#v, τ), SRC(n, l, c, _, _, f).

2 StringClass(s) :- s⟨.... class String { .. }..⟩, SRC(s, _,_,_,_, "java/lang/String.class").

3 BadNewString(f, l, c) :- NewString(τ, f, l, c), StringClass(τ).

Fig. 9. Check for wasteful String construction, split into three separate predicates to simplify our exposition.

ExtendJ is implemented in the Reference Attribute Grammar system JastAdd [Hedin and Mag-
nusson 2003], meaning that its program analyses are computed as attributes over AST nodes, and
that these attributes may be references to other AST nodes. For example, ExtendJ computes the
declaration site of a variable or a method as a reference to the AST node that contains the node’s
declaration, and the type of a variable as a reference to the AST node of the type’s class definition.
Some of these AST nodes are not AST nodes in the classical sense. ExtendJ computes synthetic AST
nodes (higher-order attributes [Vogt et al. 1989]) on-demand to represent e.g. primitive types and
classes loaded from external jar files.

Since ExtendJ runs on the Java Virtual Machine and Soufflé is a native executable, implementing
on-the-fly attribute evaluation through callbacks to Java would require considerable engineering
effort. We instead opted to tabulate program representation relations directly into Soufflé’s data
structures, using Java Native Interface calls. While tabulating the program’s original AST requires
only a simple tree traversal, the evaluation of attributes may produce new synthetic AST nodes that
we must traverse, add to the program representation relation, and recursively re-examine to extract
their attributes. We implement a fixed point algorithm here for exhaustive attribute evaluation.
JavaDL currently supports the evaluation of two attributes that may produce fresh AST nodes:

• DECL, mapping a node to the AST node declaring it, and
• TYPE, mapping an AST node to the node declaring its type

In general, the attribute extraction mechanism is easy to extend. It takes no more than 10 lines of
code to expose a new attribute as a Datalog relation. This property of our implementation facilitates
easy sharing of analyses between ExtendJ and JavaDL.

4 INCREMENTAL EVALUATION

When developers integrate static checkers into their workflow, these checkers often become part
of continuous integration or code review [Calcagno et al. 2015; Sadowski et al. 2015]. In those
scenarios, the checker runs frequently, and each run sees largely the same source code, meaning
that exhaustive analysis can be wasteful.
Consider the analysis in Figure 9. This check, inspired by SpotBugs’ DM_STRING_CTOR, looks

for explicit String object constructions, new String(#v), where #v is already a String. Since
Java Strings are immutable, this construction is inefficient. On line 1, the predicate NewString

identifies source locations ⟨f , l , c⟩ that explicitly call a String constructor with a single argument
of type τ . On line 2, StringClass finds the unique java.lang.String class. Finally, on line 3
BadNewString filters NewString to only report string constructions from existing string objects.
We see that different parts of one bug detector may need to be updated at different times: we

only need to recompute StringClass if the standard library changes, but must update NewString

on changed parts of the source code. Finally, we must update BadNewString if either of the other
relations changes.

4.1 Incremental Architecture

Changes to source code can lead to the retraction of a previously true fact, e.g., when a developer
changes the superclass of some class C from A to something else. Retractions can have consequences:
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if C inherited m from A, it will no longer do so. However, the consequences of retractions may not be
obvious: C might also have obtained m from a second source, e.g., a Java default interface method.

The literature has proposed a number of different techniques for incremental updates of Datalog-
style analyses [Gupta et al. 1993; Szabó et al. 2018]. However, we found these techniques unsuitable
for JavaDL: first, they assume that all ground facts are permanently stored in a database. In JavaDL,
the majority of ground facts are AST nodes that we derive from source files (i.e., these facts are
actually derived and “groundž only from the perspective of Datalog), and serializing these facts to
disk would incur nontrivial storage cost. Second, we assign identities to these nodes based on their
order in the parsed file, which means that a small change at the beginning of a file would trigger
individual retractions for almost all AST nodes in that same file.

While we expect to be able to avoid the second problem through a suitably tuned AST differencing
algorithm [Narasimhan et al. 2018] analogously to CFG-based differencing [Arzt and Bodden 2014],
this would not address the first problem. We aimed to keep the AST in-memory as much as possible,
so we use a conservative provenance tracking scheme that partitions facts by compilation unit,
tracks which compilation unit partition contributed to which other partition, and propagates
retractions along partition dependencies.
This partitioning scheme reflects both the level of granularity of the ASTs that we obtain from

ExtendJ and JavaDL’s use as a static checker: such tools typically run e.g. in Continuous Integration
environments, where the degree of incrementality that they encounter is that of one or more
revision control commits.
Our incremental evaluator first computes a set of stale files from a set of modified, added, and

deleted source files, to which it transitively adds all other source files that transitively depend on
stale files. It then discards data from these stale files and re-analyzes them as needed. This adds
several components over the exhaustive analysis (Section 3), which we summarize in Figure 10:

(1) Predicate Separation (Section 4.2) sorts JavaDL predicates into local predicates (e.g., New-

String and StringClass in Figure 9), which we can run on individual source files, and global
predicates which can depend on multiple source files (e.g., BadNewString in Figure 9).

(2) Attribute provenance tracking (Section 4.3) tracks source file dependencies.
(3) The Intermediate Result DataBase (IRDB) (Figure 10) caches local predicates, tagged with the

source file from which we have derived them, as well as attribute provenance.

Moreover, we split evaluation into two phases:

(1) Local predicate evaluation, whose results (PL) we cache in the IRDB, and which we only
re-run on stale files, and

(2) Global predicate evaluation, which we always run once at the end, which depends on all
local predicates and obtains them either from the cache (PC ) or from in-memory data from
the current run (PL) (Section 4.2.4).

4.2 Separating Local and Global Rules

Consider again Figure 9: as we argued above, predicate NewString and the rule defining it refer to
information from a single source file. However, that claim is not entirely obvious.While the syntactic
pattern only connects nodes from the same compilation unit (n and #v), the pair ⟨#v,τ ⟩ from TYPE

may refer to any type τ in any compilation unit. However, we can still evaluate this rule locally: if
we replace TYPE with TYPEf , a subset of TYPE that only knows the type information of all AST
nodes in file f , and set f to be the file that contains n, then ⟨#v,τ ⟩ ∈ TYPEf ⇐⇒ ⟨#v,τ ⟩ ∈ TYPE.
We can apply the exact same reasoning to SRC in the rule for NewString, and to the body of the
StringClass rule.
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Fig. 10. Incremental evaluation of a JavaDL analysis on a Java program.

However, BadNewString may combine tuples from distinct compilation units: ⟨τ , f, l, c⟩ from
any compilation unit that called the String constructor, and ⟨τ ⟩ from java/lang/String.class.
Hence, we must compute BadNewString during global evaluation.

We formalize these intuitions in the following, but first note that the separation between local and
global predicates is only relevant for predicates with variables of type ASTNode or predicates that
depend on such rules. In practice, we have encountered user-defined predicates without ASTNode
variables only as (short) block- or passlists/allowlists, so we do not consider them further here.

For our formalization, we introduce three concepts:

(1) Domain separation signatures (DSS) (Section 4.2.1), which capture which of the (ASTNode)
variables of a predicate or a rule must always be in the same compilation unit. For example,
the DSS for the rule body of NewString partitions the variables {n, #v,τ } must separate
{n, #v} from and {τ }, since τ may come from a different compilation unit.

(2) The local variable set (Section 4.2.3), which is the set of variables in a rule or parameters in
a predicate that represent the compilation unit for which we can evaluate the predicate or
rule locally. For example, we can evaluate the rule for NewString in the compilation unit
represented by {n, #v}, but not the one represented by {τ }.

(3) AST predicates, which are predicates that (transitively) depend on AST facts.

4.2.1 Domain Separation Signatures. Domain Separation Signatures (DSS) describe, for both rules
and predicates, which (ASTNode) parameters to the head literal must come from the same compila-
tion unit. We denote DSS as partitions over the variables in each rule body:

R1 = n⟨..new String(#v)..⟩ DSS(R1) = {{n, #v}}

R2 = n⟨..new String(#v)..⟩,TYPE(#v,τ ) DSS(R2) = {{n, #v}, {τ }}

and analogously for predicates, where we partition by parameter index (Figure 11).
Whenever the DSS separates two variables, we may need to defer their binding to global predicate

evaluation (with some exceptions, cf. Section 4.2.3). We thus want a DSS that is as coarse as possible:

Definition 4.1. Let N be a finite set and σ1,σ2 two partitions of N . We say that the partition σ1 is
coarser than σ2 and we write σ2 ⊑ σ1 iff ∀x .∀y.xσ2y ⇒ xσ1y.

At the same time, we require that in each partition of a DSS, all variables in that partition must
always bind to AST nodes in same compilation unit. To find the coarsest possible DSS that satisfies
this requirement, we construct a DSS lattice:
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P(n, #v) :- n⟨..new String(#v)..⟩ DSS(P) = {{1, 2}}

TYPE(n,τ ) :- . . . . DSS(TYPE) = {{1}, {2}}

SRC(n, _, _, _, _) :- . . . . DSS(SRC) = {{1}}

NewString(τ , _, _, _) :- P(n, #v),TYPE(#v,τ ), SRC(n, _, _, _, _).DSS(NewStrinд) = {{1}}

StringClass(s) :- s⟨.... class String { .. } ....⟩ DSS(StrinдClass) = {{1}}

Fig. 11. Domain Separation Signatures for predicates. 1 refers to the first parameter, 2 to the second etc.

Definition 4.2. We define the join (⊔) and meet (⊓) for partitions over N as follows, and note the
resultant top (coarsest and trivial) as well as bottom (most refined) partitions:

x(σ1 ⊔ σ2)y ⇔ ∃z.xσ1z ∧ zσ2y ⊤ = {N}

x(σ1 ⊓ σ2)y ⇔ xσ1y ∧ xσ2y ⊥ = {{n}|n ∈ N}}

Definition 4.3. Let P be a predicate of type (τ1, ...,τn) and N = {i |τi = ASTNode}. The domain
separation signature of predicate P is the coarsest partition σ of N such that if iσ j then for all
tuples ⟨v1, . . . ,vn⟩ ∈ P , vi and vj must be bound to AST nodes from the same compilation unit.

For a predicate P we denote by σx
P
the equivalence relation induced by DSS(P) on all x =

x1, . . . ,xk . Let σP = DSS(P). Then iσPj implies that any values bound to xi and x j must always
come from the same compilation unit, so we define xiσx

P
x j ⇐⇒ iσPj

We now conjunctively combine induced constraints for Datalog rule bodies of the form

R = P1(x1), . . . , Pn(xn),NOT(Pn+1(xn+1)), . . . ,NOT(Pn+m(xn+m))

Definition 4.4. The domain separation signature of a rule body R is the partition σR of the set V
of variables of type ASTNode in the rule such that

σR =
⊔

k=1,n

σ
xk
Pk

4.2.2 Inferring Domain Separation Signatures. Since predicate definitions may have recursive
dependencies, the above definitions are not yet sufficient for inference. We begin inference by
observing that the DSS for syntactic patterns is always trivial (all variables are in the same com-
pilation unit), and similarly for semantic predicates, e.g. DSS(ID) = {{1}}. The exceptions are
DSS(TYPE) = DSS(DECL) = {{1}, {2}}.
As a converse to our earlier definition, the equivalence relation σR on the variables in a rule

induces an equivalence relation on the head literal, P(x), where we define iσx
P[R]

j ⇐⇒ xiσRx j with

xi and x j in x . We compute the signatures of the predicates as a fixpoint, starting with (σP)0 = ⊤:

(σP )k+1 = (σP )k ⊓
/

P(x ):−R

σx
P[R]

The number of iterations is bounded by the height of our (finite) lattice.

Definition 4.5. We say that a DSS σP is sound iff after exhaustive evaluation of the JavaDL

program that contains P, whenever ⟨n1, . . . ,nk ⟩ ∈ P and iσPj with i, j ∈ {1, . . . ,k}, we always have
that ni and nj are from the same compilation unit. We extend this definition to σR .

Theorem 4.6. For any JavaDL program, DSS inference is sound for all P.

Proof. Sketch: Assume that i σP j, but exhaustive evaluation derives n = ⟨n1, . . . ,nk ⟩ ∈ P s.th.
ni and nj are AST nodes from different compilation units. Considering the Datalog horn clauses as
sequents, we show by coinduction that any proof for P(n) must be infinite, which is a contradiction.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 165. Publication date: October 2021.



JavaDL: Automatically Incrementalizing Java Bug Pattern Detection 165:15

First note that P cannot be a built-in predicate, whose DSS are trivially sound. By fixpoint
construction of σP, we must then have for all rule bodies R with P(x) :- R that xi σR x j . Let

R = P1(y1), . . . , Pn(yn+1),NOT(Pn+1(yn+1)), . . . ,NOT(Pn+m(yn+m))

We can ignore the negated literals, as they do not contribute to DSS and can at most remove
tuples. Observe that y σx

P
z only holds if y and z are in x , so xi σR x j iff there exists a positive

literal Pk (yk ) with xi σ
yk
Pk

x j . Since xi , x j , that literal cannot be built-in: if Pk = Parent (or
similar local AST traversal), ni and nj are in the same compilation unit (contradiction), while for

TYPE and DECL the DSS does not allow xi σ
yk
Pk

x j . By elimination, Pk must be a user-defined
predicate. Let yk = y0, . . . ,ym s.th. xi = ya and x j = yb . Then Pk is unsound, because there exists
v = ⟨v1, . . . ,vm⟩ ∈ Pk with va = ni , vb = nj . Hence va and vb are from different compilation units,
but DSSPk ) claims a σPk b. By coinduction hypothesis, the derivation of Pk (v) is infinite. □

4.2.3 Local Variable Set. While the DSS tells us which variables are always in the same compilation
unit, that information is not sufficient for telling whether we can evaluate a rule locally. For instance,
consider the following rules, both of which have the DSS {{1}, {2}}:

Q(#n,τ ) :- TYPE(#n,τ ), ⟨.... class C { .. #n .. }..⟩.

U(n,τ ) :- TYPE(n,τ ),τ ⟨.... class C { .. }..⟩.

Q finds all fields and methods #n and their types τ in any class named C, whileU finds all expressions
and declarations n whose type is any class named C. Q we can compute locally, but not U: during
incremental evaluation, TYPE only knows the data that we extract from ExtendJ for the compilation
unit under analysis, i.e., the types of local nodes, but no external references to local nodes.

Definition 4.7. For a predicate P, we define the local variable set as LV(P) ∈ DSS(P) such that we
can evaluate P locally iff all variables in LV(P) are bound to local AST nodes.

As we saw with predicates Q and U, we can evaluate TYPE locally only if parameter 1 is bound
to a local AST node. Thus, the local variable set of TYPE is {1}, while for P from Figure 11, the local
variable set consists of all its variables, {1, 2}.

Analogously to domain separation signatures, each predicate induces a local variable set. So if
i ∈ LV(Pk ) and L = Pk (. . . ,xi , . . .) is a literal, then xi ∈ LV(L) (analogously for negated literals).

Definition 4.8. For a rule R = L0 :- L1, . . . ,Lk , we define the local variable set LV(R) as the
element of DSS(R) that contains at least one local variable from all literals that have a local set, i.e.,

LV(R) = S ∈ DSS(R) s.t. for all Li ∈ {L1, . . . ,Lk }, LV(Li ) = ∅ or LV(Li ) ∩ S , ∅.

If such an element exists, R is a local rule, otherwise we set LV(R) = ∅.

Corollary 4.9. If LV(R) = S is nonempty, then by construction, all literals in R depend only on

AST nodes from the same compilation unit.

Returning to our example in Figure 9 and labeling the rule bodies on lines 1ś3 as R1,R2,R3,
respectively, we have the local variable sets: LV(R1) = {n, #v}, LV(NewString) = ∅, LV(R2) = {s},
LV(StringClass) = {s} and LV(R3) = ∅. R1 and R2 are therefore local rules.

4.2.4 Incrementalizing by Rule Localization. If all rules R for a predicate P are local, we consider
P a local predicate. All other predicates are global predicates. For each local P, we introduce two
helper predicates PL and PC . PL contains the tuples of P that we compute in the current evaluation
pass, while PC contains the tuples from cached compilation units. We augment PC and PL with an
additional marker to store its source compilation unit.
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NewStringL(τ , f , t, c, u) :- ⟨..new String(#v)..⟩,

TYPE(#v, τ ), SRC(n, l, c, _, _, f ),

BIND(u, cuidOf(n)).

OUTPUT(′NewStringL).

EDB(′NewStringC).

NewString(τ , f , l, c) :- NewStringL(τ , f , l, c, _).

NewString(τ , f , l, c) :- NewStringC(τ , f , l, c, _).

StringClassL(s, u) :- s ⟨.... class String {..}..⟩,

SRC(s, _, _, _, _, ”java/lang/String.class”),

BIND(u, cuidOf(s)).

OUTPUT(′StringClassL).

EDB(′StringClassC).

StringClass(s) :- StringClassL(s, _).

StringClass(s) :- StringClassC(s, _).

BadNewString(f , l, c) :- NewString(τ , f , l, c) , StringClass(τ ) . Global

Local

Fig. 12. Global and local rules in the incrementalized version of Figure 9. The shaded areas fuse the updated
and cached results and thereby recover the same results as if we had run an exhaustive analysis.

class A {

void foo() { }

}

class B extends A {

// void foo() { }

}

class C extends B {

void bar() { foo(); }

}A.java B.java C.java

Fig. 13. Nontrivial provenance: The foo() call in class C references A, but also depends on B.

JavaDL transforms our running example (Figure 9) into the program in Figure 12. Here, u is the
compilation unit marker, which we extract via the function cuidOf(n). Since we encode all ASTNode
objects as unique 64 bit integers that incorporate their compilation unit identifier, cuidOf(n) has
practically no overhead. The shaded areas highlight how we fuse PL and PC .

4.3 Attribute Provenance

JavaDL rules can reference compilation units in two ways: through pattern-matching, and through
semantic predicates (DECL, TYPE). We tabulate the latter directly from ExtendJ attributes. However,
individual tuples in these relations can have nontrivial provenance. Consider Figure 13. When we
analyze class C, DECL for the call foo() yields the definition of foo() in class A. However, the
provenance of this information also includes B.java, since ExtendJ must check that class B does
not override that method, i.e., changes to B can affect the DECL information in C.
To compute attribute provenance, we trace attribute evaluation with a tracing mechanism pro-

vided by JastAdd [Söderberg and Hedin 2011], the attribute grammar framework that underlies
ExtendJ. We have extended this tracing to report source file accesses in ExtendJ, and to cache
summaries for attributes that JastAdd itself caches. This technique allows us to support prove-
nance tracking for arbitrary attributes, including future extensions. Our implementation does not
yet track negative dependencies, which can arise with wildcard import statements, e.g. import
java.util.*;. Adding support for these would require some engineering effort but no changes to
our conceptual framework; in our evaluation, we systematically verified that they had no impact
on the bug reports.

5 EVALUATION

To understand the value of JavaDL as a proof-of-concept clear-box bug checker framework, we
selected an experimental setup (Section 5.1) to explore the following questions:

• RQ1: To what degree can JavaDL be used to specify common static checks? (Section 5.2)
ś RQ1.1: How expressive is JavaDL compared to other tools?

ś RQ1.2: How precise is JavaDL compared to other tools?

• RQ2: How does the execution time for JavaDL compare to the state of the art? (Section 5.3)
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ś RQ2.1: How does the execution time of JavaDL compare to other tools?

ś RQ2.2: How effective is the automatic file-level incrementalization that JavaDL enables?

5.1 Experimental Setup

Selection of Tools and Bug Patterns. Modern bug checkers come with hundreds of bug patterns. To
select representative patterns, we turned to a recent study by Habib and Pradel [2018], who compare
the SpotBugs, Error Prone, and Infer checkers on an extended version of the Defects4J [Just et al.
2014] data set3. The study identifies the five most commonly triggered detectors (“top 5 warningsž)
for each of the three selected detectors. We selected these warnings for our analysis and compared
our approach against SpotBugs’ and Error Prone’s detector implementations. We excluded both
Infer and its Top-5 detectors from our comparison, since (a) Infer’s unique separation-logic based
approach [O’Hearn 2019; Reynolds 2002] distinguishes it from the checkers that we listed in the
introduction to such a degree that it is unclear that a comparison would generalize, and (b) its
Top-5 detectors depend on flow-sensitive analyses, for which JavaDL does not currently provide
special support (Section 5.2.1), so that they would have required substantial additional effort to add.

Table 1 summarizes these detectors and their implementations. The bug patterns marked with ‘⋆’
are the Top-5 for SpotBugs (SB-Top-5) or Error Prone (EP-Top-5). SB-Top-5 and EP-Top-5 overlap in
one detector (Boxed Primitive Constructor), for a total of nine bug detectors. For completeness, the
table also lists the Covariant equals() detector that we discuss in Section 2.

Selection of Java Benchmarks. For our evaluation setup we adapted the framework developed by
Habib and Pradel [2018] to JavaDL and updated the versions of the Defects4J data set (v2.04) as
well as of the checkers (SpotBugs v4.0.3, Error Prone v2.4). We used all the projects from Defects4J,
except Gson, for which we were unable to retrieve the project properties, and Collections that we
were not able to compile with ExtendJ. For each Defects4J project, we chose the version tagged as
D4J_project_id_FIXED_VERSION, where id is the highest bug ID for project in the Defects4J database.
We implemented two JavaDL programs, one for SB-Top-5 and one for EP-Top-5. Throughout
the evaluation, we compare these two JavaDL programs directly against these recent, unaltered
versions of SpotBugs and Error Prone.

Gathering Data on Analyzer Precision. To assess precision, we compare the reports of our JavaDL
detectors on Defects4J against the reports produced by SpotBugs and Error Prone. We followed
Defects4J’s configuration in excluding the projects’ unit tests from this analysis. To compare JavaDL,
we utilize a notion of relative recall and precision:

recallT =
|WJavaDL∩WT |

|WT |
precisionT =

|WJavaDL∩WT |

|WJavaDL |

whereWT is the set of warnings reported by T . These notions of precision and recall are relative to
a checker T , so they do not represent ground truth, but rather degree of agreement with T .

5.2 RQ1: Expressiveness and Precision

5.2.1 RQ1.1: Expressiveness. Wewere able to express all detectors that we implemented in JavaDL
purely with Datalog-style logical rules, syntactic pattern matching, and our small set of carefully
selected semantic relations. We encountered no situation that we thought would be simpler to
implement imperatively, though we are of course biased.

Table 1 shows the sizes of the bug pattern implementations in Error Prone, SpotBugs, and JavaDL,
in lines of code. Some implementations additionally support suggested fixes, the implementation

3https://github.com/rjust/defects4j/pull/112
4Commit eaebff11c
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Table 1. Overview of selected bug patterns and their size in Error Prone, SpotBugs, and JavaDL. Patterns
marked with⋆ are among the Top-5 (Section 5.1). In columnNotes, a+b means thatb of the lines implemented
auto-fixups. share n means that the detector(s) were sharing their implementation with n additional detectors.
Except for DM_NUMBER_CTOR and DM_STRING_CTOR, which were in two separate files (sharing 1 and 51,
respectively), all detectors listed above (for all tools) were in a single source file each. dataflow means that
the detector additionally used the Error Prone or SpotBugs data flow analysis engine (not counted for LOC).
Column Semantics lists semantic predicates that the JavaDL implementations depended on (Section 5.2.1).

Baseline Static Checker Framework JavaDL

⋆ Bug Pattern ID LOC Notes LOC Rules Semantics

E
rr
o
r
P
ro
n
e

⋆ Boxed Primitive Constructor BoxedPrimitiveConstructor 229 115 + 114 9 3 DECL

⋆Missing @Override MissingOverride 84 82 + 2 48 30 DECL

⋆ Useless Type Parameter TypeParameterUnusedInFormals 108 27 18 DECL

⋆ Complex Operator Precedence OperatorPrecedence,
UnnecessaryParentheses

138 99 + 39 37 37

⋆ == on References ReferenceEquality 97 dataflow 88 48 DECL,TYPE

Covariant equals() NonOverridingEquals 132 116 + 16 15 9 DECL

S
p
o
tB
u
g
s

⋆ Boxed Primitive Constructor DM_NUMBER_CTOR, DM_STRING_CTOR 1415 share 52 9 3 DECL,TYPE

⋆ Expose Internal Representation EI_EXPOSE_REP, MS_EXPOSE_REP,

EI_EXPOSE_REP2, EI_EXPOSE_STATIC_REP2

138 29 20 DECL

⋆ Naming Convention Violation NM_METHOD_NAMING_CONVENTION,

NM_FIELD_NAMING_CONVENTION,

NM_CLASS_NAMING_CONVENTION

499 share 12 17 10

⋆Missing switch Default SF_SWITCH_NO_DEFAULT 289 share 4 21 8 DECL,TYPE

⋆ Field Never Written To UWF_UNWRITTEN_FIELD,

UWF_UNWRITTEN_PUBLIC_OR

_PROTECTED_FIELD

1032
share 14
dataflow

51 47 DECL

Covariant equals() EQ_ABSTRACT_SELF 541 share 18 15 9 DECL

of several bug checkers may be entangled in the same implementation, and different tools may
provide different library functionality (not counted here), so this comparison is not precise. With
that in mind, the ratio (tool LOC / JavaDL LOC) yields a range of 1.1ś12.8 (mean: 4.9) for Error
Prone (when excluding LOCs for fixes) and 4.8ś157.2 (mean: 38.4) for SpotBugs. If we normalize for
implementation sharing across SpotBugs detectors, i.e., assume that any set of n shared SpotBugs
detectors with ℓ LOC could be refactored to precisely ℓ

n
LOC each, the ratio becomes 1.3ś4.8 (mean

2.8), though we expect this to be an under-approximation. Either interpretation indicates that
JavaDL requires fewer LOC than the other tools. Detector == on References stands out as being
almost the same size for Error Prone and JavaDL. However, Error Prone’s implementation utilizes a
flow analysis framework whose size we did not include in the measurements. Our implementation of
this detector otherwise follows Error Prone’s heuristics, including checking whether the reference
type defines or inherits a custom equals() method (28 LOC in JavaDL).

Based on manual inspection of the SpotBugs and Error Prone detectors, we believe that the main
reasons for why JavaDL specifications are more concise are that (a) syntactic patterns can simplify
many nested if statements in imperative code, and (b) looping and filtering is implicit in Datalog.

Limitations in Syntactic Patterns. When encoding bug patterns in JavaDL, we sometimes found
that relying directly on syntactic patterns led to code duplication. For example, matching declara-
tions #d with the enclosing class ⟨..class #c {.. #d ..}..⟩, enum ⟨..enum #c {.. #d ..}..⟩, or
interface ⟨..interface #i {.. #d ..}..⟩ requires three separate rules that we cannot combine
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into one pattern ⟨..#td #c {.. #d ..}..⟩, since the keywords class, interface, and enum do not
themselves form a syntactic category for #td in the Java grammar.

Semantic Reasoning. The above limitation materializes especially when we analyze semantic
properties that do not cleanly map to a single syntactic construct. For example, the patterns
⟨..this.f..⟩ and ⟨..f..⟩ are syntactically distinct, but often semantically identical. In those cases,
syntactic patterns quickly become ineffective, and we found that we instead relied on Datalog
relations that captured semantic properties.

As the right-most column in Table 1 shows, all but two of our detectors rely on the static name
analysis information that we extract from ExtendJ, and three also rely on type analysis information,
while only two detectors did not include semantic information from ExtendJ.

While we can export additional information from ExtendJ, detectors can also introduce their own
helper predicates and, in principle, share them. After implementing the bug patterns, we surveyed
our implementation and identified several helper predicates that we consider potentially reusable
(possibly with minor refactoring), such as the subtyping relation, convenience extractors for type
and membership information, method signature equality checks, and relations to mark defining and
using occurrences of fields. While these observations show the importance of semantic information,
all of our detectors used multiple syntactic patterns, and the Complex Operator Precedence detector
demonstrated that semantic information is not always sufficient for real-life bug detectors, as it
relied heavily on syntactic information that is no longer visible e.g. in Java bytecode.

Flow-Sensitive Analysis. Some program analyses, such as null-pointer dereference analysis or
taint analysis [Arzt et al. 2014], rely on knowing the program execution order, typically modeled as
a control-flow graph (CFG). We have not added CFG information to JavaDL due to the nontrivial
engineering effort for building correct and precise CFGs for a mature language like Java, but see no
conceptual obstacle to building a JavaDL CFG predicate library. Alternatively, we can import the
CFGs that Riouak et al. [2021]’s recent IntraJ system superimposes over ExtendJ AST for Java 7.5

To better understand the importance of flow-sensitive analyses, we approximated their preva-
lence among the SpotBugs and Error Prone detectors by instrumenting each framework’s CFG
construction code and running individual detectors to analyze the SpotBugs core classes (967 files,
108kLOC) to see which detectors would trigger CFG construction. For SpotBugs, which groups
related detectors into 167 visitors, we found that 35 of the 167 visitors (21%) triggered CFG construc-
tion, and 3 of Error Prone’s 500 checkers (0.6%). These numbers are likely under-approximations but
indicate that flow-sensitive analysis is important, but only for a minority of today’s bug detectors.
We observed that two of the detectors that we had previously implemented were based on

detectors that triggered CFG construction (Table 1, column Notes).

5.2.2 RQ1.2: Precision. Table 2 reports on checker precision and recall, comparing the Top-
5 SpotBugs and Error Prone detectors against our JavaDL re-implementations. Several of the
patterns contain subcategories (Table 1), and we report on the subcategories in cases where our
implementation computed them separately. Whenever JavaDL reported bugs that Error Prone or
SpotBugs did not report, we manually investigated 10 randomly sampled cases (or all, if less than
10), and proceeded analogously when the baseline tools reported a bug that JavaDL did not report.

For the EP-Top-5, most checkers have a high degree of agreement. Lowest (with 77% relative
recall) is UnnecessaryParentheses. According to our sampling, the mismatch is due to the JavaDL
detector not reporting parentheses surrounding unary operators, and Error Prone not reporting on
parentheses surrounding case labels and return values.

5 This frameworkwas not yet available at the time of our experiments, while ExtendJ’s earlier data flow framework [Söderberg
et al. 2013] was unmaintained and incompatible with recent versions of ExtendJ.
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Table 2. Number of results reported by ErrorProne, SpotBugs, and JavaDL for the selected bug patterns on
the Defects4J repositories. łPrecisionž and łrecallž are relative to the baseline tool (cf. Section 5.1). We report
on bug subcategories for detectors that implement the subcategories separately.

Static Checker Framework (Baseline Tool) Number of Results Precision

Name Bug Pattern JavaDL Tool Common Precision Recall

E
P
-T
o
p
-5

⋆ Boxed Primitive Constructor 429 425 423 98.60 99.53

⋆Missing @Override 4533 5341 4393 96.91 82.25

OperatorPrecedence 84 100 82 97.62 82.00

⋆ == on References 1176 1235 1169 99.40 94.66

⋆ Useless Type Parameter 99 95 95 95.96 100.00

UnnecessaryParentheses 257 174 134 52.14 77.01

S
B
-T
o
p
-5

DM_NUMBER_CTOR 190 182 158 83.16 86.81

DM_STRING_CTOR 5 5 5 100.00 100.00

⋆ Expose Internal Representation 3546 161 108 3.05 67.08

NM_CLASS_NAMING_CONVENTION 0 0 0 N/A N/A

NM_FIELD_NAMING_CONVENTION 9 0 0 0.00 N/A

NM_METHOD_NAMING_CONVENTION 1120 38 38 3.39 100.00

⋆Missing switch Default 223 87 81 36.32 93.10

UWF_UNWRITTEN_FIELD 3 1 0 0.00 0.00

UWF_UNWRITTEN_PUBLIC_OR_PROTECTED_FIELD 3 0 0 0.00 N/A

For Missing @Override, JavaDL fails to produce warnings when the overridden method is a
library method, since ExtendJ fails to evaluate attributes on some AST nodes created from bytecode,
which excludes those nodes from the TYPE relation. The recall for OperatorPrecedence is due to
differences in reporting: for instance, for a && b || c && d, Error Prone produces two warnings,
one per &&, while JavaDL produces a single report for the entire expression, whose root is the ||.

Turning to the bottom (SB-Top-5) half of the table, JavaDL is able to detect all DM_STRING_CTOR
and NM_METHOD_NAMING_CONVENTION warnings reported by SpotBugs. The lower recall rates on
Missing switch Default due to over-reporting in SpotBugs, caused by its lack of access to AST data
(SpotBugs operates on Java bytecode [SpotBugs community 2021]). For UWF_UNWRITTEN_FIELD,
JavaDL does report SpotBugs’ single warning, but at the field’s definition, rather than the access
location. The other two warnings are unwritten fields that SpotBugs fails to detect. Similarly, we
found that JavaDL’s warnings for UWF_UNWRITTEN_PUBLIC_OR_PROTECTED_FIELD were correct.

The low precision of Expose Internal Representation is due to JavaDL assuming that all reference
types are mutable, while SpotBugs uses domain knowledge to filter out known immutable classes
like String.
For DM_NUMBER_CTOR, we observed that SpotBugs and JavaDL match on 20 additional reports,

with SpotBugs reporting the bug one line off from its source location. The remaining 4 reports that
SpotBugs produces are constructor calls where the argument is a cast to String. JavaDL produces
12 additional correct warnings.

Overall, none of the differences indicate systematic limitations and could be addressed by evolving
the JavaDL bug patterns.

5.3 RQ2: Execution Time Performance

Gathering Data on Run-Time Performance. To assess the efficiency of JavaDL for bug detection
in a practical usage scenario, we iterated through a series of consecutive Git commits of Defects4J
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Table 3. Distribution of commit sizes (touched files, added lines, removed lines) and the sizes of the projects at
the start and at the end of the commit range. "M." stands for median and "90%" stands for the 90th percentile.

Project Touched files/commit Added lines/commit Deleted lines/commit Lines of code Files

Mean M. 90% Max. Mean M. 90% Max. Mean M. 90% Max. Start End Start End

Cli 5.30 2 8 149 211.09 16 216 17844 176.54 4 79 19167 0 7070 0 52
Codec 3.15 1 5 170 57.86 6 111 1835 34.13 3 57 1430 13492 19568 85 122

Compress 3.39 1 4 180 70.52 10 171 1969 35.23 3 52 1965 31478 41838 251 341
Csv 1.71 1 3 20 28.97 5 61 1139 20.35 2 29 1152 3597 6117 25 31

J...Core 3.15 2 6 66 93.39 42 235 2839 33.52 9 75 1513 22477 43803 146 256
J...Databind 3.92 2 7 95 71.44 39 169 967 35.33 9 95 800 102361 114590 816 925

Jsoup 2.91 2 6 28 52.44 16 104 5287 20.40 3 32 2168 8854 20403 58 117
Math 7.16 2 12 210 211.95 30 501 28873 143.60 10 173 28291 6122 22749 74 281

Mockito 5.80 3 13 201 130.39 18 123 38603 33.42 8 69 1412 11014 38868 204 532
Time 8.79 2 10 628 583.62 29 472 127673 164.89 3.5 92 43798 45238 176827 240 656

projects and measured the time that it took to run JavaDL, Error Prone, and SpotBugs on each
commit. For these measurements, we included each projects’ unit tests, as we would in practice.

To ensure a fair comparison, we configured Error Prone and SpotBugs to only run their respective
Top-5 detectors, and ran JavaDL separately for our implementations of SB-Top-5 and EP-Top-5.
Unlike Error Prone and SpotBugs, JavaDL supports incremental evaluation, so we ran JavaDL with
four configurations in total: {SB-Top-5, EP-Top-5} × {exhaustive, incremental}, with incremental
runs re-using the IRDB from the previous incremental run (except for the first run).

For incremental analysis, we ran these experiments on 500 commits of the Defects4J benchmarks6,
and for exhaustive analysis we ran them on 50 equidistant commits from this range, including the
first and the last commits. We selected these commits to be the closest predecessors of the commit
we used for precision analysis, counting only commits that modified source files.

Table 3 shows the distributions of the number of touched files (modified, added or removed)
from the selected sequence, and project sizes in the last four columns. We argue that these numbers
show that the projects are realistic software projects at different stages in their life time.
For our performance analysis, we excluded several benchmarks: Chart, since it did not use Git

(which our scripts required), and Closure, JxPath and Lang, because some of the commits among the
500 that we examined crashed ExtendJ and corrupted our IRDB. While recovering the IRDB from a
backup would be trivial in a production system, we argue that including such runs would impair
the representativeness of the incremental measurements. For the remaining projects we made a
best effort to process them with all tools but found that SpotBugs and Error Prone’s dependence on
javac prevented many comparisons. We adjusted builds by tweaking compiler settings, adding
libraries, or excluding problematic files (without examining the impact on our later measurements).
Despite our efforts, some projects had a substantial number of failing builds (Cli: 18, Time: 25,Math:
29, Databind: 35, JacksonXML: 42) for the baseline checkers. We excluded all measurements for the
affected revisions from our analysis and removed JacksonXML entirely. For incremental runs, we
also the removed measurements for the 5 following/preceding revisions.
We ran our experiments on an Intel(R) Core(TM) i7-11700K CPU system, running at a fixed

3.6 GHz with 128 GiB RAM on Ubuntu 18.04.5 with Linux 5.13.7-051307-generic and OpenJDK
11.0.11+9-Ubuntu-0ubuntu2.18.04 inside a Docker container.

5.3.1 RQ2.1: Performance Comparison. Figure 14 shows the distribution of the measured running
times for the incremental and exhaustive JavaDL analyses compared to the baseline detectors, i.e.,
Error Prone (above) and SpotBugs (below).
We observe that overall JavaDL performs competitively to the existing checkers, irrespective

of code base size. Our incremental checker often but not universally outperforms the exhaustive

6Except for Cli where the Git history contains only 360 commits.
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EP-Top-5

SB-Top-5

Fig. 14. Running time distribution on 500 consecutive commits for EP-Top-5 (above) and SB-Top-5 (below).
The shaded boxes represent the mean.

checker. The similarity between the performance for JavaDL on the SB-Top-5 and EP-Top-5 suggests
that JavaDL’s performance depends more on the project structure than on the selection of checkers.

We further observe in the EP-Top-5 diagram that the Math, JacksonDatabind and Time projects
have peaks in running times that are more than four times higher than the average. While similar
in relative magnitude, the peaks have different causes. ForMath, the peak is caused by a merge
commit from a release branch (6ef3b2932f). For JacksonDatabind, the largest running time due to
a merge commit (33840a208b) that modifies a significant number of files, though we also observed
a set of high measurements caused by commits that modify files that are referenced by many other
files (e.g., DeserializationContext.java in commit 5b8f0d9923). The maximum running time
for the Time project is caused by a major move/rename commit 53feb3fa56, affecting 176 out
of the total of 656 files in the project. Our brief analysis of the running time peaks also showed
that for merge commits and major move/rename commits, the running time is higher than the
time needed for the initial run of the analysis. A continuous integration system could use this
observation to attempt to predict when it is more efficient to delete the IRDB and re-start from
scratch, or to temporarily switch to exhaustive analysis.

Overall, our performance measurements suggest that our prototype framework offers run-time
performance comparable to that of state-of-the-practice systems, with neither incremental nor
exhaustive mode consistently outperforming the other.
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(a) EP-Top-5 detectors (b) SB-Top-5 detectors

Fig. 15. Average running time for exhaustive (E) and incremental (I) runs, split by evaluation phases

5.3.2 RQ2.2: Incremental Performance. To explain the difference in incremental execution time
between the projects, we turn to Figure 15, which shows the average time spent by JavaDL in
each phase for the EP-Top-5 (a) and SB-Top-5 (b) detectors. While the running time of the analysis
program is overall shorter for the incremental runs (including IRDB read and write), it is also clear
that the incremental runs suffer from the overhead of the provenance tracking mechanisms that
increase the time spent generating the program representation (Datalog projection). The Datalog
projection phase grows with number of analyzed files, which includes the number of modified files
as well as the files that need to be revisited because they contain an attribute whose value depends
on modified files. On slower hard disks, we have also observed a second overhead, for deleting stale
IRDB facts (not visible here).

Fig. 16. Cumulative distribution of the maximum rel.
degree in the analyzed commits

We observed that it is mainly not commits
that modify many files that contribute most to
high running times, but commits that modify
files on which other files’ attributes depend.
We characterize this property with the notion
of the relative degree of a file F , which is the
fraction of the files in the project that contain
an attribute whose value was computed using F
and whose analyses we must thus re-run when
F changes.

Figure 16 shows the cumulative distribution
function computed over all the commits in each
project. We can observe that for the Codec,
Compress andMath projects, 80% of the com-
mits have a degree of at most 0.1 and a fur-
ther 10% a maximum degree of 0.2. They are
followed by JacksonDatabind, which also has
about 70% of the commits with a maximum
degree of 0.2. These are the same projects in
which our incremental analysis is most effective at outperforming the exhaustive analysis. Mean-
while, in Mockito 30% of the commits have a degree of less than 0.1 and 30% of the commits have a
maximum degree of 0.4, which is also the maximum for this project, in line with the pronounced
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bimodal distribution of the running times for the project. These observations indicate that the
commit history is correlated with the running times of the incremental analysis, and thus can help
inform which evaluation mode to choose for JavaDL for a given commit in a given project.

Analyzing the average running times spent in each phase for SB-Top-5 (Figure 15(b)), we observe
that the amount of time needed to read, write and delete facts in the IRBD is more than twice that
of the EP-Top-5 detectors. This indicates that the number of facts that are produced in the local
evaluation pass but used in the global one is significantly higher in SB-Top-5.

The above observation reflects that we have not yet automated all locality optimizations that we
are aware of, and manually optimized only EP-Top-5 for locality. Our main manual optimization
was to split rules for locality. For instance, we could compress our earlier example (Figure 9) into:
BadNewString(f, l, c) :- n ⟨..new String(#v)..⟩, TYPE(#v, τ ), SRC(n, l, c, _, _, f),

τ ⟨.... class String { .. }..⟩, SRC(s, _, _, _, _, "java/lang/String.class").

However, this rule is global and uses local predicates, so the predicates’ tuples would be stored
in the IRDB without further optimization. SRC in particular contains one tuple per AST node;
materializing it on disk would be expensive. In Figure 9, we avoided this problem by extracting
only the source locations of interest into the NewString predicate, analogously to the Magic Sets
transformation [Bancilhon et al. 1985]. We expect to automate this process in future work.

5.4 Discussion and Limitations

One limitation of our language that we have so far omitted is that, unlike e.g. Prolog, our Datalog
dialect is not Turing-complete but effectively restricted to PTIME [Immerman 1999]. While we did
not find this restriction limiting in our experiments, it does bar JavaDL from expressing EXPTIME-
complete analyses (e.g., bounded symbolic execution) or semi-decidable analyses (e.g., Java type
analysis [Grigore 2017]). Thus, JavaDL offers less expressivity than afforded by e.g. general-purpose
IDE/IFDS-based incrementalization frameworks [Arzt and Bodden 2014]; JavaDL is subject to the
usual limitations of Datalog in this space. We defer to Madsen et al. [2016] for a detailed discussion.
We emphasize that this restriction is a trade-off: the syntactic simplicity of JavaDL ensures

that JavaDL detectors are clear-box detectors and can be analyzed and transformed to integrate
confidence score computation [Raghothaman et al. 2018], to explain their chains of reasoning [Zhao
et al. 2020] or for incrementalization (as shown in this paper), or for integrations of these techniques,
e.g., to use knowledge of recent changes to adjust confidence scores.

This restricted expressive power comes with more easily checkable correctness guarantees. For
comparison, existing free-form (or black-box) IDE/IFDS-based approaches place complex semantic

constraints of distributivity on transfer/flow functions [Reps et al. 1995] to ensure consistent results.
Analyses that fail to meet these constraints may work correctly on some inputs but fail in corner
cases or when run in different evaluation modes. By contrast, JavaDL projects will (in principle Ð
i.e., not accounting for implementation bugs) evaluate correctly whenever they type-check.

Summary. Overall, our results show that our JavaDL implementation enables both exhaustive
and incremental evaluation, with performance comparable to state-of-the-practice tools, and that
the JavaDL language can concisely express a variety of both syntactic and semantic checks, both
intra- and inter-procedural. While we have only analyzed the concepts that underlie JavaDL on
one language (the subset of Java 8 supported by ExtendJ) and on a limited set of bug detectors, we
argue that our results yield data points to support the case for clear-box bug detectors as devices
for enabling architectural advances in bug checking.
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6 RELATED WORK

JavaDL combines four strands of work: domain-specific languages for program analysis, Datalog
dialects, pattern matching languages, and systems with alternative but equivalent execution models.

To the best of our knowledge, the first system to demonstrate the connection between DSLs for
program analysis, logic programming, and pattern matching was the SOUL system by De Roover
et al. [2011]. While SOUL does not aim to support multiple execution models or report performance
on par with contemporary bug checkers, other aspects of its design are closely related to ours: SOUL
provides syntactic patterns in a similar style as JavaDL [De Roover 2009; De Roover et al. 2007],
albeit restricted to five syntactic categories. It performs logical reasoning through a SmallTalk-based
Prolog implementation (rather than Datalog), connects to the Eclipse JDT framework (rather than
to ExtendJ), and provides data flow analysis support via Soot [Vallée-Rai et al. 2010]. SOUL’s use
of Prolog results in a top-down evaluation strategy, which permits incremental evaluation and
simplifies integration with traditional imperative analysis code, at the cost of performance [Ullman
1989], where Datalog has shown its strength in recent years [Bravenboer and Smaragdakis 2009;
Scholz et al. 2016]. The SOUL pattern language also omits some language features such as generics,
but captures the majority of the Java syntax supported by Eclipse in 2011, whereas our language is
directly based on the grammar and AST of a Java compiler through an automatic transformation
(with minimal manual intervention) and thus faithfully captures the entire Java syntax. Unlike
SOUL, our work did not yet explore data flow analysis (as we discuss in Section 5.2.1).
Beyond SOUL, Visser [2002] argues in favor of syntactic pattern matching, with Fischer and

Visser [2004] opting for concrete syntax over AST matching by arguing that “the simple abstract
syntax approach quickly becomes cumbersome as the schemas become largerž. Their AutoBayes
system combines syntactic pattern matching with Prolog, compared to which DeepWeaver [Falconer
et al. 2007] adds program rewriting for implementing aspect weaving. Another related system with
syntactic pattern matching is our earlier MetaDL [Dura et al. 2019], which analyzes a Datalog
dialect, in which it needs to match only one syntactic category. MetaDL uses a different AST
encoding that maps each syntactic rule or AST node to a separate predicate (Section 3.3.2), which
we found to be less efficient for Java than our approach here. Like SOUL, MetaDL has not seen a
systematic evaluation for bug patterns, unlike JavaDL. A final closely related system is Cohen et
al’s JTL [Cohen et al. 2006], which provides a Datalog-style language together with a Java-like
query syntax for querying Java class files for structural and dataflow information. Similar to JavaDL
and SOUL, JTL exposes a number of built-in pre-computed predicates to aid program analysis,
though it does not expose the AST and thus limits the amount of reasoning that it allows.

There are many other systems that support syntactic pattern matching. Visser [2002] uses GLR
parsing for processing syntactic patterns, instead of Earley parsing as in our work. GLR parsing
may improve the performance of our JavaDL specification frontend. To address possible bugs
or inefficiencies from concrete syntax patterns, Kats et al. [2011] offer an interactive tool that
suggests AST categories for concrete syntax tree patterns. Similarly, but on the concrete syntax
level, Huang et al. [2008] automatically infer the syntactic type of syntactic patterns. We believe
that this technique can enable optimizations and improve static checking in our syntactic patterns.

Kats et al. [2008] extend syntactic parsing in an extensible compiler that allows language exten-
sions to normalize to mixtures of source code and bytecode, similarly to the Attribute Grammar
system Silver [Van Wyk et al. 2010]. This style of normalization allows specifying analyses and
transformations at the concrete syntax tree level while matching at a more abstract level, which
(in effect) automatically generalizes analyses and transformations. The trade-off is that the effect
of a match or transformation becomes less obvious, and that it may become impossible to match
syntactic peculiarities that are not visible at the AST level. For example, JavaDL can distinguish
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between (x) and ((x)), which is necessary for our UnnecessaryParentheses bug pattern, but a
system that uses matching after normalization may lack suitable information (e.g., in SpotBugs).
While not Datalog, two other closely related domain-specific languages are the program query

language PQL [Martin et al. 2005] and the earlier commercial .QL [De Moor et al. 2007] system (now
CodeQL). Neither system provides support for syntactic matching in the style of JavaDL or SOUL.
PQL provides a SQL-like interface that allows not only static analysis, but also dynamic analysis and
instrumentation, though it does not provide fine-grained AST / parse tree matching or support for
analyzing arithmetic or primitive values. PQL is thus more useful for analyzing dynamic protocols,
e.g., to check if a test during execution releases an external resource (e.g., a file handle) exactly once,
while JavaDL is more useful for general-purpose static checking. Dynamic information can also be
critical for analyzing reflection [Li et al. 2019]. For static tools like JavaDL, the lack of dynamic
knowledge could be mitigated through ground facts from external tools [Bodden et al. 2011]. .QL,
meanwhile, combines ideas from attribute grammars and SQL, giving it powerful static analysis
capabilities, but without JavaDL-style syntactic matching capabilities.
While Datalog and its dialects have aided program analysis for over a decade, most existing

tools like DOOP [Bravenboer and Smaragdakis 2009] rely on a separate fact extraction mechanism.
DOOP’s Java fact extractors translate either a Soot- or WALA-specific IR [Fink and Dolby 2012;
Vallée-Rai et al. 2010] to a common representation, encoded as a set of predicates. This predicate-
based Datalog IR encodes enough information for DOOP’s points-to and call graph analyses, but
(1) lacks source locations (necessary for precise error reports), (2) represents the program under
analysis linearly, without any notion of nesting of type definitions, blocks or expressions (necessary
for syntactic checks such as Complex Operator Precedence), and (3) hardcodes the set of predicates
that it exposes to Datalog and requires detail knowledge of DOOP internals and Soot or WALA
IRs to evolve or maintain this fact extraction code. By contrast, JavaDL provides the analysis code
with a full representation of the analyzed program, which enables a broad range of static checks.

The literature has proposed several extensions to Datalog such as general-purpose lattices in
Flix [Madsen et al. 2016] and IncA [Szabó et al. 2018]. These valuable extensions are orthogonal to
ours. While JavaDL automates fact extraction by directly exposing the program AST, Basten and
Klint [2008] propose a language-parametric scheme for using AST annotations to determine which
facts to extract. We hypothesize that JavaDL could automate these AST annotations through bug
pattern meta-analysis, to reduce the number of facts that we project from ExtendJ to Soufflé.
Earlier Prolog-based approaches to program analysis include Janzen and De Volder’s JQuery

system [Janzen and De Volder 2003], based on Prolog extended with aspect pointcut-style predicates
and intended for Java code browsing, and a SOUL-like system Eichberg et al. [2007], without
syntactic matching but with Eclipse IDE integration and Prolog-based incrementalization. Due to
the different (top-down vs. bottom-up) evaluation modes, their techniques are not applicable to
JavaDL. By using Prolog, both systems are in principle Turing complete, which may enable them
to express more powerful analyses but loses the termination guarantee and bottom-up evaluation
strategy (more efficient for whole-program analysis) that Datalog provides. Overall, the perhaps
earliest discussion of logic programming for program analysis is due to Reps [1995], who focused
on incrementalizing analysis through the Magic Sets transformation [Bancilhon et al. 1985].

Attribute Grammars [Knuth 1968] are another declarative programming paradigm for program
analysis. Tools such as AbleC [Kaminski et al. 2017] for C and ExtendJ (formerly JastaddJ) for
Java [Ekman and Hedin 2007; Öqvist and Hedin 2013], which underlies JavaDL, provide declarative
features for computing attributes of AST nodes by synthesizing information from other AST nodes
(including other attributes). Computations can be functional (in AbleC, based on Silver [Van Wyk
et al. 2010]) or imperative (in ExtendJ, based on JastAdd [Hedin and Magnusson 2003]). Unlike
Datalog, attribute grammar systems provide special support for reasoning over tree structures.
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Silver provides support for syntactic pattern matching, but (to the best of our knowledge) no
support for computations over general-purpose relations, while JastAdd does not provide syntactic
pattern matching support, but can support general-purpose relations [Mey et al. 2018] (a feature
not yet explored for purposes of program analysis). Attribute grammars have been used for bug
finding [Söderberg et al. 2013], and some analyses may be easier to encode in attribute grammars.
If so, JavaDL can import them through ExtendJ attributes. Attribute Grammars support multiple
alternative execution models, like Datalog. Reference attribute grammars, supported in JastAdd, are
evaluated on-demand [Hedin and Magnusson 2003] and can be evaluated both concurrently [Öqvist
and Hedin 2017] and incrementally [Söderberg and Hedin 2012].

Arzt and Bodden [2014] have demonstrated incremental program analysis for (distributive) IFDS-
and IDE-based analyses in their Reviser system, assuming the presence of a program differencing
algorithm, and Cheetah by Do et al. [2017] demonstrates related techniques to prioritizing local
bug detection during live editing. Their approaches to granularity are more fine-grained than ours:
Reviser operates on CFG node differences, and Cheetah’s notions of locality cover eight different
layers, of which our file level is only one. Neither system supports syntactic matching. They focus
exclusively on semantic properties, and both assume existing facilities to map the object language
to graphs for flow analysis, whereas JavaDL only requires an AST.
Lhoták and Hendren [2004]’s Jedd system takes a near-converse approach to ours: they extend

Java with special support for operations over relations and SAT solving, and use it in the context
of Soot [Vallée-Rai et al. 2010] for imperative program analyses. More recently, Opal [Helm et al.
2020] demonstrated complex and high-performance program analyses by combining imperative
implementations of program analyses in a Datalog-like blackboard architecture. While the analyses
themselves are not clear-box specifications, Opal obtains some ability to alternate execution modes
from hand-written meta-information and manual incrementalization. Other program analysis
systems such as Soot [Vallée-Rai et al. 2010], WALA [Fink and Dolby 2012], or Spoon [Pawlak et al.
2016] provide program analysis facilities as regular Java libraries.

7 CONCLUSION

We have introduced JavaDL, the first static checker framework (to the best of our knowledge)
that can run any PTIME-computable static bug detector on Java from a single specification both
exhaustively and incrementally, while automatically rewriting the specification to optimize it for
incremental evaluation. Our tool combines syntactic patterns for local reasoning with declarative,
Datalog-style nonlocal reasoning. We have demonstrated that the efficiency of our prototype
implementation, based on an existing high-performance Datalog engine, is competitive to state-of-
the-practice systems, that our specification language can concisely express typical bug detectors,
and that its incremental and exhaustive evaluation are both able to outshine each other in different
usage scenarios. We argue that our results demonstrate the value and viability of clear-box bug
checker frameworks, which constrain the bug detector specification language in order to obtain the
ability to analyze and transform detector specifications for different usage modes.
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