
PQL/Java language definition, v0.2 (draft)

Christoph Reichenbach, Yannis Smaragdakis, Neil Immerman

March 31, 2012

This document defines the domain language ‘PQL/Java’. The purpose of
PQL/Java is to facilitate parallelisable queries that can be embedded in Java
programs.

1 Integration with Java

PQL/Java defines a number of additional keywords. To integrate with Java,
these keywords assume the meaning defined in this document iff the source file
they are defined in contains the following import statement:

import static edu.umass.pql.Query;

In the absence of this statement, the syntax and semantics of a PQL/Java
program are identical to those of a regular Java program.

Keywords. PQL/Java defines the following keywords:
query reduce forall exists over

2 Syntax

Any Java expression (JAVA-EXPR) may contain a query (QUERY) as a subex-
pression. A query in turn follows the following production:

QUERY ::= 〈QUANT-EXPR〉 | id | 〈JAVA-EXPR〉 | 〈QEXPR〉

That is, it may be a quantifier expression (QUANT-EXPR) that quantifies one
or more logical variables (such as forall x, y : a[x] > b[y]), a single identifier
that references such a logical variable (such as x or y in the above example
for QUANT-EXPR), or one of two unquantified expressions: an arbitrary Java
expression (which may contain side effects but no logical variables) or a Q-
Expression (QEXPR), which may contain logical variables and sub-queries but
no side effects.

That the semantics of Q-Expressions and Java-expressions are identical when-
ever they produce the same expression.

1

Note that since Java expressions may contain subqueries, it is possible to nest
multiple queries in the same expression, though these must not share variables.

In the following, we first describe quantifier expressions, then Q-expressions.

2.1 Quantifier expressions

Quantifier expressions take one of the following forms:

QUANT-EXPR ::= 〈QUANT〉 〈ID〉 ‘:’ 〈QUERY〉
| query ‘(’ 〈MATCH〉 ‘)’ ‘:’ 〈QUERY〉
| reduce ‘(’ id ‘)’ 〈ID〉 [over 〈ID-SEQ〉] : 〈QUERY〉

The first form of quantification is universal or existential quantification: here,
QUANT may be either forall or exists. The second form of quantification, a
container query, constructs maps, sets, or arrays. The third and final form is
a general-purpose reduction operation. We describe these forms in more detail
below.

2.1.1 Universal and existential quantifications

Universal or existential quantification extends over an identifier ID , which can
be one of the following:

ID ::= id | 〈JAVA-TY〉 id

For now, consider an example of the second form:

forall int x : x == x

This tests whether all x that are of type int are equal to themselves. This
particular should always evaluate to true. Similarly,

exists int x : x == 0.5

will test whether there exists an integer x that is equal to 0.5; this test will
evaluate to false.

We refer to the identifier occuring in the ID construct as the query variable.
If a java type (JAVA-TY) is present, the query variable is explicitly typed.
These two cases behave differently, as we discuss in Section 3.2. Informally, the
difference is that for queries

/∗ A ∗/ forall int x : a[x] > 0

/∗ B ∗/ forall x : a[x] > 0

the compiler will infer the static type for Example B, and also infer that
it should only consider values for x that occur in the domain of a, whereas for
Example A, it will consider all 232 possible int values for x, irrespectively of the
size of a. Unless a is a special-case java.util.Map, this will always yield an array
index out of bounds exception.

Section 5 describes extended syntax through which multiple identifiers may
be quantified by the same existential or universal clause.

2

2.1.2 Container queries

A container query has the syntax

query ‘(’ 〈MATCH〉 ‘)’ ‘:’ 〈QUERY〉
where a MATCH is one of the following:

MATCH ::= ‘Set’ ‘.’ ‘contains’ ‘(’ 〈CM〉 ‘)’
| ‘Map’ ‘.’ ‘find’ ‘(’ 〈CM〉 ‘)’ ‘==’ 〈CM〉 [default 〈QUERY〉]
| ‘Array’ ‘[’ 〈ID〉 ‘]’ ‘==’ 〈CM〉

For now, assume that CM is an identifier. The first of the above productions
then constructs a set, as in the following example:

query (Set.contains(x)): x == 0

This would construct a set of integers containing precisely the number zero.
The second construction builds a map:

query (Map.find(x) == y): range(1, 10).contains(x) && y == x*x

This would construct a map of all numbers from 1 to 10 to their squares.
range(1, 10) here is a logical constant and a Java expression, denoting a set of
all integers from 1 through 10.

Note that the above does not provide mappings for other numbers in the set;
dereferencing them and treating them as integers has the same effect as trying
to implicitly unbox a null in Java.

Maps may contain a default clause:

query (Map.find(x) == y default -1): range(1, 10).contains(x) && y == x*x

This would construct the same map as above, except that all numbers outside
of the range 1 through 10 are mapped to -1.

The third construct builds arrays. For example,

query (Array[x] == y): range(1, 10).contains(x) && y == x*x

is the same as our map construction without defaults, with one exception:
the missing array index (0) is filled in with the default value for the relevant type
(i.e., 0 for integers). Thus, this will construct an 11-element array containing
0, 1, . . . , 81, 100.

In the above, we assumed that CM are always identifiers. This is not nec-
essarily the case, since they may also be logical constants (Java expressions) or
constructor invocations:

CM ::= 〈JAVA-EXPR〉 | 〈ID〉
| new 〈JAVA-TY〉 ‘(’ [〈CM-SEQ〉] ‘)’

In the above, CM-SEQ denotes a comma-separated sequence of CM .
For example, if we have a datatype ‘IntPair’ that contains two integer values,

we can construct a set of pairs of values and their negations as follows:

query (Set.contains(new IntPair(x, y))) : range(1, 100).contains(x) && y == -x

3

2.1.3 Reductions

The last query construct are reductions, which follow the syntax below:

reduce ‘(’ id ‘)’ 〈ID〉 [over 〈ID-SEQ〉] : 〈QUERY〉

In the above, ID-SEQ denotes a comma-separated sequence of ID .
The first parameter to a reduction is always a reduction operator, such as

the built-in sumInt, sumLong and sumDouble operators. For example,

reduce (sumInt) x : set.contains(x)

This will sum up all numbers contained in set after coercing them to int.
Sometimes reduction requires additional free variables. We obtain these

using the keyword over:

reduce (sumDouble) x over y : set.contains(y) && x == 1.0 / y

This will sum up the inverses of all numbers contained in the set.

2.2 Q-expressions

Specifically, a QEXPR has the following form:

QEXPR ::= ‘(’ 〈QUERY〉 ‘)’
| 〈QUERY〉 〈BINOP〉 〈QUERY〉
| 〈QUERY〉 instanceof 〈JAVA-TY〉
| 〈UNOP〉 〈QUERY〉
| 〈QUERY〉 ‘?’ 〈QUERY〉 ‘:’ 〈QUERY〉
| 〈QUERY〉 ‘.’ ‘find’ ‘(’ 〈QUERY〉 ‘)’
| 〈QUERY〉 ‘[’ 〈QUERY〉 ‘]’
| 〈QUERY〉 ‘.’ ‘contains’ ‘(’ 〈QUERY〉 ‘)’
| 〈QUERY〉 ‘.’ id
| 〈QUERY〉 ‘.’ length
| 〈QUERY〉 ‘.’ size ‘(’ ‘)’

That is, it combines queries through a number of operators. In the above,
BINOP is taken from a set of binary operators listed below (these have the
same semantics as in Java):

• ||: logical disjunction

• &&: logical conjunction

• |: bitwise disjunction (this is identical to logical disjunction for booleans)

• &: bitwise disjunction (this is identical to logical disjunction for booleans)

• ^: bitwise exclusive-or

• \%: modulo

4

• *: multiplication

• +: addition

• -: subtraction

• /: division

• >: greater-than comparison

• <: less-than comparison

• <=: less-than or equal comparison

• >=: greater-than or equal comparison

• !=: inequality (for objects, this is reference inequality)

• ==: equality (for objects, this is reference equality)

• <<: logical shift-left

• >>: logical shift-right, carrying the sign

• >>>: logical shift-right, not carrying the sign

• =>: logical implication (such that ‘a => b’ is equivalent to ‘(!a) || b’, if !
is logical negation). This is the only new operator.

The instanceof operator also works as in Java, meaning that a instanceof java.lang.Set

evaluates to true iff the object a has a dynamic type that is a subtype of
java.lang.Set.

UNOP expands to the three unary Java operators, - (arithmetic negation),
! (logical negation), and ~ (bitwise inversion).

The ternary operator −?− : − is identical to Java’s if-then-else operator for
expressions (though PQL/Java provide syntactic sugar for the same construct,
cf. Section 5). For example, list.size() > 0 ? 1 : -1 evaluates to 1 iff the size
of the list list is greater than zero, and to -1 otherwise.

Q-expressions of the form q.find(x) or q[x] are equivalent. Both denote
a map or array lookup (depending on the static type of q) and evaluate to
the element indexed by x. For example, myArray.find(3) for an integer array
myArray would obtain the 4th element of the array. This operation raises the
same exceptions as regular Java array accesses might raise.

Q-expressions of the form q.contains(x) test whether a given Java set q

contains element x. They evaluate to true or false and again copy the exception
behaviour of Java.

Q-expressions of the form q.f are projections that obtain the contents of field
f. Field f must be accessible from the context the query originates in according
to the rules of reflective field access in Java (i.e., the field may be private and in
a different class, but field access via the Java reflection API must be permitted).

5

Q-expressions of the form q.length or q.size() are equivalent. Both evaluate
to the size of an array, java.util.Collection, or java.util.Map, as determined
by the static type of q.

Figure 1 summarises the language syntax. We define the semantics in the
next section, except for constructs inherited from Java:

JAVA-EXPR A Java expression
JAVA-TY A Java type
id A Java identifier

3 Static Semantics

3.1 Types

Type checking is as for Java. All types are implicit, unless annotated explicitly in
〈ID〉 . Boxing/unboxing conversions are implicit; failed conversion are described
in the dynamic semantics.

reductions, the type of the body is the type of the value being reduced over
(e.g., int for a sum of integers). This means that summing a set of values requires
an explicit contains check:

reduce(addInt) x : set.contains(x)

3.2 Domains

Logical variables can either be declared ‘with type’ as in

forall int i : ...

or ‘without type’, as in

forall i : ...

These declarations specify different semantics. The explicitly typed variant
has the obvious semantics, for example, forall int i : a[i] will raise an ‘index
out of bounds’ exception if a is an array. Explicitly typed variables conceptually
iterate over all viable values of their type τ , where viable is defined as follows:

• If τ is an enumeration, the viable values of τ are all members of the
enumeration, as per java.util.EnumSet.allOf.

• If τ is an ordinal type such as int or boolean, the viable values of τ are all
possible values for τ permitted by the Java programming language.

• If τ is a floating-point type, i.e., float or double, then the viable values for
τ are all the values of that type that exist in live objects on the Java heap.

• Otherwise, τ is a reference type, and the viable values for τ are all the
objects of that type that exist in live objects on the Java heap.

6

QUERY ::= 〈QUANT-EXPR〉 | id | 〈JAVA-EXPR〉 | 〈QEXPR〉

QUANT-EXPR ::= 〈QUANT〉 〈ID〉 ‘:’ 〈QUERY〉
| query ‘(’ 〈MATCH〉 ‘)’ ‘:’ 〈QUERY〉
| reduce ‘(’ id ‘)’ 〈ID〉 [over 〈ID-SEQ〉] : 〈QUERY〉

OVER ::= ε | over 〈ID-SEQ’〉

QUANT ::= forall | exists

QEXPR ::= ‘(’ 〈QUERY〉 ‘)’
| 〈QUERY〉 〈BINOP〉 〈QUERY〉
| 〈QUERY〉 instanceof 〈JAVA-TY〉
| 〈UNOP〉 〈QUERY〉
| 〈QUERY〉 ‘?’ 〈QUERY〉 ‘:’ 〈QUERY〉
| 〈QUERY〉 ‘.’ ‘find’ ‘(’ 〈QUERY〉 ‘)’
| 〈QUERY〉 ‘[’ 〈QUERY〉 ‘]’
| 〈QUERY〉 ‘.’ ‘contains’ ‘(’ 〈QUERY〉 ‘)’
| 〈QUERY〉 ‘.’ id
| 〈QUERY〉 ‘.’ length
| 〈QUERY〉 ‘.’ size ‘(’ ‘)’

BINOP ::= ‘||’ | ‘&&’ | ‘|’ | ‘&’ | ‘^’ | ‘%’ | ‘*’ | ‘+’ | ‘-’
| ‘/’ | ‘>’ | ‘<’ | ‘<=’ | ‘>=’ | ‘!=’ | ‘==’ | ‘<<’
| ‘>>’ | ‘>>>’ | ‘=>’

UNOP ::= ‘!’ | ‘~’ | ‘-’

MATCH ::= ‘Set’ ‘.’ ‘contains’ ‘(’ 〈CM〉 ‘)’
| ‘Map’ ‘.’ ‘find’ ‘(’ 〈CM〉 ‘)’ ‘==’ 〈CM〉 [default 〈QUERY〉]
| ‘Array’ ‘[’ 〈ID〉 ‘]’ ‘==’ 〈CM〉

CM ::= 〈JAVA-EXPR〉 | id
| new 〈JAVA-TY〉 ‘(’ [〈CM-SEQ〉] ‘)’

CM-SEQ ::= 〈CM〉 | 〈CM-SEQ〉 ‘,’ 〈CM〉

ID ::= 〈ID〉 | 〈JAVA-TY〉 id

ID-SEQ ::= 〈ID〉 | 〈ID-SEQ〉 ‘,’ 〈ID〉

Figure 1: PQL/J syntax

7

By contrast, a local variable without explicit type is subject to domain in-
ference. This means that the variable’s type and bounds are inferred from the
body of the quantification. The precise rules will be described in a later version
of the specification. For now, the following shall give an intuition (∆ denotes a
set):

∆, i ` B::δ
∆ ` forall i : B::δ

∆, i ` a[i]::range(0, a.length - 1).contains(i)

where range(a, b) computes the set of all integers from a to b (inclusive):

public static java.util.Set<Integer> range(int min, int max);

Whenever a quantification has the judgement

Q : B::δ

we rewrite it to
Q : δ =⇒ B

3.3 Semantic constraints

4 Dynamic Semantics

Exceptions in the query body are propagated to the outside. There is no guar-
antee about the order in which exceptions are delivered. Failed lookups in maps
are translated into java.lang.IndexOutOfBoundsExceptions.

Queries such as

query(Map.find(int a) == int b) : a == 1

&& range(1,2).contains(b)

in which we construct a multi-map that is not a partial map are invalid and
raise a query failure through the edu.umass.pql.AmbiguousMapException.

Map defaults Maps constructed with the default keyword are total maps that
produce the default value unless they have been bound differently. Such maps
cannot produce a

5 Extended syntax

The language further defines the following syntactic shortcuts, expressed as
rewritings:

8

RW0:

’if’ <QUERY.0> ’then’ <QUERY.1> ’else’ <QUERY.2>

==>

<QUERY.0> ’?’ <QUERY.1> ’:’ <QUERY.2>

RW1:

<QUANT> <ID> <ID-SEQ> ’:’ <QUERY>

==>

<QUANT> <ID> ’:’ <QUANT> <ID-SEQ> <QUERY>

RW2:

’reduce’ ’(’ X ’)’ ’:’ S

==>

’reduce’ ’(’ X ’)’ <JAVA-TY> id ’:’ id ’where’ S ’.’ ’contains’ ’(’ id ’)’ // id fresh

RW3:

’count’ ’(’ X ’)’ Y ’:’ S

==>

’reduce’ ’(’ ’sum’ ’)’ Y ’:’ ’1’ ’where’ S

RW4

Map[<CM>] ==> Map.find(<CM>):

RW5

Array.find(<ID>) ==> Array[<ID>]

6 Reduction operator definition

Reduction operators must be associative and commutative, and provide a neu-
tral element. In Java, they must be static methods annotated with exactly
one of @DefaultValueInt(d), @DefaultValueLong(d) or @DefaultValueDouble(d),
where d gives their neutral element, or not annotated at all, in which case their
neutral element is null.

9

