
Foundations of Programming Languages
The UNIX Run-Time System

Prof. Dr. Christoph Reichenbach

Fachbereich 12 / Institut für Informatik

17. Oktober 2014

Memory and Multi-Processing

Modern computers run multiple processes in parallel

Process 1

li $t0, 0xc00000808
li $t1, 1
sd $t1, 0($t0)

Process 2

li $t0, 0xc00000808
li $t1, 0x1337
sd $t1, 0($t0)

I Virtual memory: Memory addresses mean different things
for different processes

I Processes don’t interfere

Memory and Multi-Processing

Modern computers run multiple processes in parallel

Process 1

li $t0, 0xc00000808
li $t1, 1
sd $t1, 0($t0)

Process 2

li $t0, 0xc00000808
li $t1, 0x1337
sd $t1, 0($t0)

I Virtual memory: Memory addresses mean different things
for different processes

I Processes don’t interfere

x86-64 memory addresses

I x86-64 uses 64-bit memory addresses
I Only lowest 48 bits are actually used
I Processes can decide how to use (‘map’) these

I At program start:
I Loader allocates some addresses
I Maps addresses to physical memory
I Loads code, data into memory
I Jumps into loaded code to start execution

x86-64 memory addresses

I x86-64 uses 64-bit memory addresses
I Only lowest 48 bits are actually used
I Processes can decide how to use (‘map’) these
I At program start:

I Loader allocates some addresses
I Maps addresses to physical memory
I Loads code, data into memory
I Jumps into loaded code to start execution

Conventional memory layout in x86-64/Linux

Default allocation at program start:
I Operating system memory: not
accessible to user-space code

I Stack: function calls, some
temporary allocation

I Heap: temporary allocation
I Static memory: ‘global’ memory
I Code (also known as text):
machine code

Code

Static memory
Heap

Stack

OS Kernel

spfp

$gp

Layout requested by OS loader

Static Memory

I Used for:
I Global variables (e.g., in C)
I Constants (e.g., literal strings)

I Size of region:
I fixed by loader

I Access via:
I $gp register points to this region

Stack Memory

I Used for:
I Local variables
I Function calls, parameters
. . .

I Size of region:
I On x86, stack begins at top of address space (by
convention)

I Grown automatically by operating system
I Access via:

I $sp register points to lowest allocated byte on stack
I $fp points into usable portion of stack

I Usage (e.g., need b bytes):
I Lower $sp by b
I Use region from $sp to $sp+ b
I Increase $sp by b when done

Heap Memory

I Used for:
I ‘catch-all’ when static/stack memory don’t suffice

I Region size:
I Arbitrary; grown on demand (explicit requests)

I Access via:
I Keep pointers around after allocation

I Usage: Process must manage heap:
I Deallocate unused memory
I Search for unused space on allocation
I Grow heap (call operating system) if needed
I Defragment memory (optional, not in C/C++)

Address Space Conventions

I Conventions simplify interaction with remainder
of system

I Address space leaves substantial space for
custom memory usage

I Example here: we have mapped about 14 TiB
I Programs can freely allocate addresses for their
own purposes

I Address space used e.g. by:
I File access
I Dynamic library loader
I Threads

Summary

I Each process has its own address space
I No interference with other processes
I Can allocate (‘map’) new regions

I Conventional regions (mostly pre-allocated by loader):
I Code (‘.text’): executable code
I Static memory: fixed-size read/write memory
I Stack: dynamically FILO memory

I Grows downwards on x86-64
I Heap: catch-all

I Explicit kernel requests needed to allocate, grow
I Used by malloc (C), new (C++)

I Can map additional regions as needed

